Plasma-Based Chemical Modification of Epitaxial Graphene

Article Preview

Abstract:

In this work, the treatment of epitaxial graphene on SiC using electron beam generated plasmas produced in mixtures of argon and oxygen is demonstrated. The treatment imparts oxygen functional groups on the surface with concentrations ranging up to about 12 at.%, depending on treatment parameters. Surface characterization of the functionalized graphene shows incorporation of oxygen to the lattice by disruption of ∏-bonds, and an altering of bulk electrical properties.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 717-720)

Pages:

657-660

Citation:

Online since:

May 2012

Export:

Price:

[1] A. K. Geim, Graphene: Status and Prospects Science 324 (2009) 1530-1534.

Google Scholar

[2] C. Berger, Z. Song, X. Li, X. Wu, N. Brown, C. Naud, D. Mayou, T. Li, J. Hass, A. N. Marchenkov, E. H. Conrad, P. N. First, and W. A. de Heer, Electronic Confinement and Coherence in Patterned Epitaxial Graphene, Science 312 (2006) 1191-1196.

DOI: 10.1126/science.1125925

Google Scholar

[3] J. K. Hite, M. E. Twigg, J. L. Tedesco, A. L. Friedman, R. L. Myers-Ward, C. R. Eddy, Jr., and D. K. Gaskill, Conductance Anisotropy in Epitaxial Graphene Sheets Generated by Substrate Interactions, Nano Lett. 11 (2010) 1190-1194.

DOI: 10.1021/nl104072y

Google Scholar

[4] D. A. Abanin, A. V. Shytov, and L. S. Levitov, Peierls-type instability and tunable band gap in functionalized graphene, Phys. Rev. Lett. 105 (2010) 086802-4.

DOI: 10.1103/physrevlett.105.086802

Google Scholar

[5] T. Ohta, A. Bostwick, T. Seyller, K. Horn, and E. Rotenberg, Controlling the Electronic Structure of Bilayer Graphene, Science 313 (2006) 951-954.

DOI: 10.1126/science.1130681

Google Scholar

[6] D. K. Samarakoon and X. -Q. Wang, Tunable band gap in hydrogenated bilayer graphene, Acs Nano 4 (2010) 4126-4130.

DOI: 10.1021/nn1007868

Google Scholar

[7] M. Wu, C. Cao, and J. Z. Jiang, Light non-metallic atom (B, N, O and F) -doped graphene: a firstprinciples study, Nanotechnol. 21 (2010) 505202-6.

Google Scholar

[8] J.R. Hahn, H. Kang, S. Song, and I.C. Jeon, Observation of charge enhancement induced by graphite atomic vacancy: A comparative STM and AFM study, Phys. Rev. B 53 (1996) R1725-R1728.

DOI: 10.1103/physrevb.53.r1725

Google Scholar

[9] D. Marton, K.J. Boyd, T. Lytle and J.W. Rabalais, Near Threshold Ion Induced Defect Production in Graphite, Phys. Rev. B 48 (1993) 6757-6766.

DOI: 10.1103/physrevb.48.6757

Google Scholar

[10] S.G. Walton, C. Muratore, D. Leonhardt, R.F. Fernsler, D.D. Blackwell, and R.A. Meger, Electron beam-generated plasmas for materials processing, Surf. Coat. Technol., 186 (1-2) (2004) 40-46.

DOI: 10.1016/j.surfcoat.2004.04.007

Google Scholar

[11] M. Baraket, S.G. Walton, E.H. Lock, J.T. Robinson, F.K. Perkins, Electron beam generated plasmas for the functionalization of graphene, Appl. Phys. Lett. 96 (2010) 231501-3.

DOI: 10.1063/1.3436556

Google Scholar

[12] S.G. Walton, D. Leonhardt, and R.F. Fernsler, Time-resolved Diagnostics in a Pulsed, Electron BeamGenerated Plasma, IEEE Trans. Plasma Science, 33 (2005) 838-843.

DOI: 10.1109/tps.2005.845239

Google Scholar

[13] S.G. Walton, ∗ E.H. Lock, A. Ni , M. Baraket, R.F. Fernsler, D.D. Pappas, K.E. Strawhecker, and A.A. Bujanda, Study of plasma-polyethylene interactions using electron beam generated plasmas produced in Ar/SF6 mixtures, J. Appl. Polym. Sci. 117 (2010).

DOI: 10.1002/app.32249

Google Scholar

[14] G.G. Jernigan, B.L. VanMil, J.L. Tedesco, J.G. Tischler, E.R. Glaser, A. Davidson III, P.M. Campbell, and D.K. Gaskill, Comparison of epitaxial graphene on Si-face and C-face 4H SiC formed by ultrahigh vacuum and RF furnace production, Nano Lett. 9 (2009).

DOI: 10.1021/nl900803z

Google Scholar

[15] N. M. Rodriguez, P. E. Anderson, A. Wootsch, U. Wild, R. Schlogl, and Z. Paal, XPS, EM, and Catalytic Studies of the Accumulation of Carbon on Pt Black, J. Catal. 197 (2001) 365-377.

DOI: 10.1006/jcat.2000.3081

Google Scholar

[16] M. Hundhausen, R. Puesche, J. Roehrl, and L. Ley, Characterization of defects in silicon carbide by Raman spectroscopy, Phys. Stat. Sol. B-Basic 245 (2008) 1356-1368.

DOI: 10.1002/pssb.200844052

Google Scholar

[17] A. C. Ferrari, B. Kleinsorge, G. Adamopoulos, J. Robertson, W. I. Milne, V. Stolojan, L. M. Brown, A. LiBassi, and B. K. Tanner, Determination of bonding in amorphous carbons by electron energy loss spectroscopy, Raman scattering and Xray reflectivity, J Non-Cryst. Solids 266 (2000).

DOI: 10.1016/s0022-3093(00)00035-1

Google Scholar

[18] A. C. Ferrari and J. Robertson, Interpretation of Raman spectra of disordered and amorphous carbon, Phys. Rev. B 61 (2000) 14095-14107.

DOI: 10.1103/physrevb.61.14095

Google Scholar