The Stacking Fault Energy and its Dependence on the Interstitial Content in Various Austenitic Steels

Article Preview

Abstract:

The stacking fault energy (SFE) is an intrinsic property of metals and is involved in the deformation mechanism of different kind of steels, such as TWIP (twinning induced plasticity), TRIP (transformation induced plasticity), HNS (high nitrogen), and high strength steels. The dependence of the SFE on the content of interstitial elements (C, N) is not yet fully understood, and different tendencies have been found by different authors. In order to study the influence of the interstitial elements on the SFE, experimental measurements extracted from literature were collected and analyzed to predict the individual and combined effect of carbon and nitrogen in different systems. The referenced austenitic steels are Fe-22Mn-C, Fe-30Ni-C, Fe-15Cr-17Mn-N, Fe-18Cr-16Ni-10Mn-N, Fe-18Cr-9Mn-C-N, Fe-18Mn-18Cr-C-N and Fe-(20-30)Mn-12Cr-C-N. The calculation of the SFE is based on the Gibbs free energy of the austenite to ε-martensite transformation (ΔGγàε), which is calculated by means of the Calphad method. The revision of the measured values reveals that on different ranges of interstitial contents the SFE behaves differently. At lower values (C, N or C+N up to 0.4%), a local minimum or maximum is found in most of the systems. At higher concentration levels, a proportional dependence seems to occur. These observations agree with the theory of the dependence of SFE on the free electron concentration. Alloying with Mn or Ni has a strong influence on the electronic configuration and magnetic properties of the austenite and therefore on the SFE. The results of this study provide valuable information for materials design, especially in the context of alloying with C, N or C+N.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 706-709)

Pages:

2193-2198

Citation:

Online since:

January 2012

Export:

Price:

[1] O. Grassel; L. Kruger; G. Frommeyer; L. W. Meyer:. High strength Fe-Mn- Al, Si TRIP/TWIP steels development - properties - application. International Journal of Plasticity. 16 (2000) 10-11, S. 1391–1409.

DOI: 10.1016/s0749-6419(00)00015-2

Google Scholar

[2] G. Frommeyer; U. Brux; P. Neumann:. Supra-ductile and high-strength manganese-TRIP/TWIP steels for high energy absorption purposes. ISIJ International 43 (2003) 3,S. 438–446.

DOI: 10.2355/isijinternational.43.438

Google Scholar

[3] S. Allain; J. P Chateau; O. Bouaziz; S. Migot; N. Guelton:. Correlations between the calculated stacking fault energy and the plasticity mechanisms in Fe-Mn-C alloys: 13th International Conference on the Strength of Materials. Materials Science and Engineering A 387-389 (2004).

DOI: 10.1016/j.msea.2004.01.059

Google Scholar

[4] L. Mujica. Development of High-Strength Corrosion-Resistant Austenitic TWIP Steels with C+N. PhD Dissertation. Ruhr-Universität Bochum, (2010).

Google Scholar

[5] G. B. Olson; M. Cohen:. General mechanism of martensitic nucleation 2. FCC-BCC and other martensitic transformations. Metallurgical Transactions A - Physical Metallurgy and Materials Science 7 (1976) 12, S. 1905–(1914).

DOI: 10.1007/bf02659823

Google Scholar

[6] K. Ishida:. Direct Estimation of Stacking Fault Energy by Thermodynamic Analysis. phs. stat. sol. (a) 36 (1976), S. 717–728.

DOI: 10.1002/pssa.2210360233

Google Scholar

[7] I. A. Yakubtsov; A. Ariapour; D. D. Perovic:. Effect of nitrogen on stacking fault energy of f. c. c. iron-based alloys. Acta Materialia 47 (1999) 4, S. 1271–1279.

DOI: 10.1016/s1359-6454(98)00419-4

Google Scholar

[8] Y. N. Petrov:. On the electron structure of Mn-, Ni- and Cr-Ni-Mn austenite with different stacking fault energy. Scripta Materialia 53 (2005) 10, S. 1201–1206.

DOI: 10.1016/j.scriptamat.2005.07.002

Google Scholar

[9] T. H. Lee; E. Shin; C. S. Oh; H. Y. Ha; S. J. Kim:. Correlation between stacking fault energy and deformation microstructure in high-interstitial-alloyed austenitic steels. Acta Materialia 58 (2010) 8, S. 3173–3186.

DOI: 10.1016/j.actamat.2010.01.056

Google Scholar

[10] E. Schramm; R. P. Reed:. Stacking fault energies of 7 commercial austenitic steels. Metallurgical Transactions A - Physical Metallurgy and Materials Science 6 (1975) 7, S. 1345–1351.

DOI: 10.1007/bf02641927

Google Scholar

[11] A. Saeed-Akbari; J. Imlau; U. Prahl; W. Bleck:. Derivation and Variation in Composition-Dependent Stacking Fault Energy Maps Based on Subregular Solution Model in High-Manganese Steels. Metallurgical and Materials Transactions A - Physical Metallurgy and Materials Science 40A (2009).

DOI: 10.1007/s11661-009-0050-8

Google Scholar

[12] Y. K. Lee; C. S. Choi:. Driving force for gamma ->epsilon martensitic transformation and stacking fault energy of gamma in Fe-Mn binary system. Metallurgical and Materials Transactions A - Physical Metallurgy and Materials Science 31 (2000).

DOI: 10.1007/s11661-000-0271-3

Google Scholar

[13] Q. X. Dai; A. D. Wang; X. N. Cheng; X. M. Luo:. Stacking fault energy of cryogenic austenitic steels. Chinese Physics 11 (2002) 6, S. 596–600.

DOI: 10.1088/1009-1963/11/6/315

Google Scholar

[14] J. Nakano; P. J. Jacques:. Effects of the thermodynamic parameters of the hcp phase on the stacking fault energy calculations in the Fe-Mn and Fe-Mn-C systems. CALPHADComputer Coupling of Phase Diagrams and Thermochemistry 34 (2010).

DOI: 10.1016/j.calphad.2010.02.001

Google Scholar

[15] R. Stoltz; J.B. Vander Sande:. The effect of nitrogen on stacking fault energy of Fe-Ni- Cr-Mn steels. Metallurgical and Materials Transactions A 11 (1980) 6, S. 1033–1037.

DOI: 10.1007/bf02654717

Google Scholar

[16] V. G. Gavriljuk; B. Shanina; A. Tyshchenko; H. Berns; S. Riedner:. High Interstitial Stainless Austenitic Steels, Part II: Electronic and crystal structure, effect of loading: Proceedings of 10-th International Conference on High Nitrogen Steels (HNS 09). In HNS09 // Proceedings of 10-th International Conference on High Nitrogen Steels, HNS 2009, 6 - 8 July 2009, Moscow, Russia, Band MISIS, S. 140–149, Moscow (2009).

DOI: 10.1007/978-3-642-33701-7

Google Scholar

[17] V. G. Gavriljuk; Y. Petrov; B. Shanina:. Effect of nitrogen on the electron structure and stacking fault energy in austenitic steels. Scripta Materialia 55 (2006) 6, S. 537–540.

DOI: 10.1016/j.scriptamat.2006.05.025

Google Scholar

[18] A. Dumay; J. P Chateau; S. Allain; S. Migot; O. Bouaziz:. Influence of addition elements on the stacking-fault energy and mechanical properties of an austenitic Fe-Mn-C steel: 14th International Conference on the Strength of Materials. Materials Science and Engineering: A 483-484 (2008/6/15/), S. 184–187.

DOI: 10.1016/j.msea.2006.12.170

Google Scholar

[19] S. M. Cotes; A. F. Guillermet; M. Sade:. Fcc/Hcp martensitic transformation in the Fe-Mn system: Part II. Driving force and thermodynamics of the nucleation process. Metallurgical and Materials Transactions A - Physical Metallurgy and Materials Science 35A (2004).

DOI: 10.1007/s11661-004-0111-y

Google Scholar

[20] W. S. Yang; C. M. Wan:. The influence of aluminium content to the stacking fault energy in Fe-Mn-Al-C alloy system. Journal of Materials Science 25 (1990/03/01/) 3, S. 1821–1823.

DOI: 10.1007/bf01045392

Google Scholar

[21] A. P. Miodownik:. Calculation os stacking fault energies in Fe-Ni-CR alloys. CALPHAD Computer Coupling of Phase Diagrams and Thermochemistry 2 (1978) 3, S. 207–226.

DOI: 10.1016/0364-5916(78)90010-x

Google Scholar

[22] C. I. Qiu:. A thermodynamic evaluation of the Fe-Mn-N system. Metallurgical Transactions A - Physical Metallurgy and Materials Science 24 (1993) 3, S. 629–645.

DOI: 10.1007/bf02656632

Google Scholar

[23] C. Qiu:. Themodynamic analysis and evaluation of the Fe-Cr-Mn-N system. Metallurgical Transactions A - Physical Metallurgy and Materials Science 24 (1993) 11, S. 2393–2409.

DOI: 10.1007/bf02646519

Google Scholar