Kinetic Modeling of the Deformation Behavior of High-Strength Nanostructured Al-Mg Alloys

Article Preview

Abstract:

Basing on the kinetic modeling, the role of microstructure peculiarities in formation of a revealed experimentally high-strength state of the nanostructured Al 6061 (Mg 0.8…1.2, Si 0.4…0.8, Cu 0.15…0.40, Cr 0.15…0.35, Mn 0.15, Fe 0.7, Zn 0.25, Ti 0.15 wt. %) alloy was analyzed, Possible strengthening mechanisms of the alloy subjected to high pressure torsion at room temperature have been considered. It has been shown that the grain size and segregation of Si, Cu and Mg atoms from the solid solution in the grain boundaries area are the main factors that enhance the alloy strength. Conclusions on the deformation mechanisms acting in the considered alloy have been made. They can be helpful for predicting the mechanical properties of materials. Quantitative estimation of the dislocation density, the stress of dislocation strengthening, and the stress of dislocation pinning by Mg atoms has been made.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

203-211

Citation:

Online since:

May 2011

Export:

Price:

[1] M. Yu. Murashkin, A.R. Kil'mametov, R.Z. Valiev: The Physics of Metals and Metallography Vol. 106 (2008), p.90.

Google Scholar

[2] G. Nurislamova, X. Sauvage, M. Murashkin et al.: Phil. Mag. Letters Vol. 88 (2008), p.459.

Google Scholar

[3] H. Konrad, in: Ultrafine-Grain Metals, edited by J. J. Burke and V. Weiss, Syracuse University Press, Syracuse, NY (1970).

Google Scholar

[4] R.W. Armstrong, in: Ultrafine-Grain Metals, edited by J. J. Burke and V. Weiss, Syracuse University Press, Syracuse, NY (1970).

Google Scholar

[5] G.А. Маlygin: Solid State Physics Vol. 49 № 6 (2007), p.961.

Google Scholar

[6] G.А. Маlygin: Solid State Physics Vol. 47 № 2 (2005), p.236.

Google Scholar

[7] I.V. Alexandrov, R. G Chembarisova: Rev. Adv. Mater. Sci. Vol. 16 (2007), p.51.

Google Scholar

[8] M. Zehetbauer: Acta mater. Vol. 41 (1993), p.589.

Google Scholar

[9] Y. Estrin, L.S. Tóth, A. Molinari, Y. A. Bréchet: Acta mater. Vol. 46 № 15 (1998), p.5509.

Google Scholar

[10] O. Sitdikov, T. Sakai, E. Avtokratova, R. Kaibyshev, K. Tsuzaki, Y. Watanabe: Acta Mater. Vol. 56 (2008), p.821.

DOI: 10.1016/j.actamat.2007.10.029

Google Scholar

[11] W.A. Curtin, D.L. Olmsted, L.G. Hector Jr.: Nature materials Vol. 5 (2000), p.875.

Google Scholar

[12] A. Kelly, R. Nicholson: Precipitation Hardening (Progress in Materials Science, Pergamon Press, London, 1963).

Google Scholar

[13] P. Ambrosi, W. Homeier, Ch. Schwink: Scripta Met. Vol. 14 (1980), p.183.

Google Scholar

[14] B.I. Smirnoff: Dislocation Structure and Crystal Hardening (Science, Leningrad 1981).

Google Scholar

[15] G.А. Маlygin: Phys. Stat. Sol. Vol. 37 (1995), p.3.

Google Scholar

[16] G.А. Маlygin: Solid State Physics Vol. 34 № 10 (1992), p.3200.

Google Scholar

[17] F.B. Prinz, A.S. Argon: Acta Metall. Vol. 32 № 7 (1984), p.1021.

Google Scholar

[18] R. Berner, G. Kronmuller: Plastic deformation of monocrystals (Mir, Moscow, 1969).

Google Scholar

[19] I.I. Novikov: Crystallography and defects in a crystalline lattice (Metallurgia, Moscow, 1990).

Google Scholar

[20] R.Z. Valiev, V. Yu. Gertsman, O.A. Kaibyshev, Sh.K. Khannanov: Phys. Stat. Sol. (a) Vol. 78 (1983), p.177.

Google Scholar

[21] S.M. Klotsman: Physical Science Success Vol. 160 (1990), p.99.

Google Scholar

[22] A.D. Le Kler : Diffusion in Metals with a Body – Centered Cubic Lattice (Metallurgia, Moscow, 1969).

Google Scholar

[23] P.G. Sanders, A.B. Withey , J.R. Weertman, et. al.: Mater. Sci. Eng., A Vol. 204 (1995), p.7.

Google Scholar

[24] V.V. Rybin: Large plastic deformations and failure of metals (Metallyrgy, Moscow, 1986).

Google Scholar

[25] M.A. Shtremel: Strength of alloys. Part II. Deformation (MISIS, Moscow, 1997).

Google Scholar

[26] R. L. Fleischer, W. Hibbard, in: The relation between the structure and Mechanical Properties of Metals Teddington, London (1963).

Google Scholar

[27] M. Fine, in: The relation between the structure and Mechanical Properties of Metals, Teddington, London (1963).

Google Scholar

[28] W.J. Kim, T.J. Park et al.: Metall. Mater. Trans. A Vol. 33 (2002), p.3155.

Google Scholar

[29] H. Conrad: Mater. Sci. Eng. A V. 341 (2003), p.216.

Google Scholar