Simulation of Spherulite Growth during Polymer Crystallization by Use of a Cellular Automaton

Article Preview

Abstract:

This article introduces a 3D cellular automaton model for the prediction of spherulite growth phenomena in polymers at the mesoscopic scale. The automaton is discrete in time, real space, and orientation space. The kinetics is formulated according to the Hoffman-Lauritzen secondary surface nucleation and growth theory for spherulite expansion. It is used to calculate the switching probability of each grid point as a function of its previous state and the state of the neighboring grid points. The actual switching decision is made by evaluating the local switching probability using a Monte Carlo step. The growth rule is scaled by the ratio of the local and the maximum interface energies, the local and maximum occurring Gibbs enthalpy of transformation, the local and maximum occurring temperature, and by the spacing of the grid points. The use of experimental input data provides a real time and space scale.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 467-470)

Pages:

603-610

Citation:

Online since:

October 2004

Authors:

Export:

Price:

[1] Turnbull D, Fisher JC. J Chem Phys 1949, 17: 71.

Google Scholar

[2] Lauritzen JI, Hoffman JD. J. Res. Natl. Bur. Stand. 64 (1960) 73.

Google Scholar

[3] Hoffman JD, Davis GT, Lauritzen JI, in Treatise of Solid State Chemistry, N. B. Hanney editor, Plenum Press. New York. 1976. vol. 3, chapter 7, page 497.

Google Scholar

[4] Hoffman JD, Miller RL, Polymer 1997, 38: 3151.

Google Scholar

[5] Snyder CR, Marand H, Mansfield ML Macromolecules 1996, 29: 7508.

Google Scholar

[6] Snyder CR, Marand H, Macromolecules 1997, 30: 2759.

Google Scholar

[7] Raabe, D., Philosophical Magazine A 79 (1999) 2339.

Google Scholar

[8] Raabe, D., Annual Review of Materials Research 32 (2002) 53.

Google Scholar

[9] Raabe, D., Acta Materialia, in press.

Google Scholar