Corrosion Resistance of Ti6Al4V Alloy in Modified SBF Environments

Article Preview

Abstract:

The paper presents results of influence of modified artificial plasma on corrosion resistance of Ti6Al4V ELI alloy. The samples were subjected to grinding, anodic oxidation and steam sterilization. After 28-day exposure to Ringer’s solution as well as Tas - SBF and R - SBF fluids, studies of electrochemical impedance spectroscopy, corrosion resistance and the amount of metal ions released into the solutions were carried out. The obtained results were compared to the results obtained for the samples in the initial state. It was found that the highest reactivity in contact with the Ti6Al4V ELI alloy was observed for the Tas - SBF containing TRIS whereas the lowest reactivity was observed for the Ringer's solution. The obtained results indicate the possible use of the modified physiological solutions, in order to carry out a more rigorous test of corrosion resistance of metal materials.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

79-86

Citation:

Online since:

April 2016

Export:

Price:

* - Corresponding Author

[1] N. Kovačević, B. Pihlar, V.S. Selih, I. Milošev, The Effect of pH Value of a Simulated Physiological Solution on the Corrosion Resistance of Orthopaedic Alloys. Acta chimica Slovenica 59 (2012) 144–55.

Google Scholar

[2] S. Virtanen, I. Milošev, E. Gomez-Barrena, R. Trebše, J. Salo, Y.T. Konttinen, Special modes of corrosion under physiological and simulated physiological conditions. Acta Biomaterialia 4 (2008) 468–476. DOI: 10. 1016/j. actbio. 2007. 12. 003.

DOI: 10.1016/j.actbio.2007.12.003

Google Scholar

[3] J. Szewczenko, M. Pochrzast, W. Walke, Evaluation of electrochemical properties of modified Ti6Al4V ELI alloy. Przeglad Elektrotechniczny, 87, 12B (2011) 177-180.

Google Scholar

[4] J. Marciniak, J. Szewczenko, W. Kajzer, Surface modification of implants for bone surgery. Archives of Metallurgy and Materials, 60, 3B (2015) 13-19. DOI: 10. 1515/amm-2015-0357.

DOI: 10.1515/amm-2015-0357

Google Scholar

[5] M. Kaczmarek, Investigation of pitting and crevice corrosion resistance of NiTi alloy by means of electrochemical methods. Przeglad Elektrotechniczny, 86, 12 (2010) 102-105.

Google Scholar

[6] A. Krauze, A. Ziębowicz, J. Marciniak, Corrosion resistance of intramedullary nails used in elastic osteosynthesis of children. Journal of Materials Processing Technology, 162-163 (2005) 209-214.

DOI: 10.1016/j.jmatprotec.2005.02.191

Google Scholar

[7] Y.T. Konttinen, M. Takagi, J. Mandelin, J. Lassus, J. Salo, M. Ainola, I. Virtanen, M. Liljeström, H. Sakai, Y. Kobayashi, T. Sorsa, R. Lappalainen, A. Demulder, S. Santavirta, Acid Attack and Cathepsin K in Bone Resorption Around Total Hip Replacement Prosthesis. Journal of Bone and Mineral Research 16 (2001).

DOI: 10.1359/jbmr.2001.16.10.1780

Google Scholar

[8] J. Marciniak, Biomaterials, Gliwice, Silesian University of Technology Publishing House, (2013).

Google Scholar

[9] A. Ziębowicz, B. Ziębowicz, B. Bączkowski: Electrochemical behavior of materials used in dental implantological systems. Solid State Phenomena, 227 (2015) 1662-9779.

DOI: 10.4028/www.scientific.net/ssp.227.447

Google Scholar

[10] W. Walke, J. Przondziono, Electrochemical behaviour of stainless steel wire for urology. Solid State Phenomena, 16 (2010) 404-409.

DOI: 10.4028/www.scientific.net/ssp.165.404

Google Scholar

[11] M. Basiaga, W. Walke, Z. Paszenda, P. Karasiński, J. Szewczenko, The effects of a SiO2 coating on the corrosion parameters cpTi and Ti6Al7Nb alloy. Biomatter 4, 1, (2014) e28535, DOI: 10. 4161/biom. 28535.

DOI: 10.4161/biom.28535

Google Scholar

[12] M. Basiaga, Z. Paszenda, W. Walke, P. Karasiński, J. Marciniak, Electrochemical impedance spectroscopy and corrosion resistance of SiO2 coated cpTi and Ti6Al7Nb alloy. Information Technologies in Biomedicine. Advances in Intelligent Systems and Computing 284 (2014).

DOI: 10.1007/978-3-319-06596-0_39

Google Scholar

[13] J. Szewczenko, M. Basiaga, M. Kiel-Jamrozik, M. Kaczmarek, M. Grygiel, Corrosion resistance of Ti6Al7Nb alloy after various surface modifications. Solid State Phenomena, 227 (2015) 483-486. DOI: 10. 4028/www. scientific. net/SSP. 227. 483.

DOI: 10.4028/www.scientific.net/ssp.227.483

Google Scholar

[14] S. Jalota, S.B. Bhaduri, A.C. Tas, Effect of carbonate content and buffer type on calcium phosphate formation in SBF solutions. Journal of Materials Science: Materials in Medicine 17 (2006) 697 – 707.

DOI: 10.1007/s10856-006-9680-1

Google Scholar

[15] S. Jalota, S.B. Bhaduri, A.C. Tas, In vitro comparison of the apatite inducing ability of three different SBF solutions on Ti6Al4V. Proceedings of the 29th International Conference on Advanced Ceramics and Composites 26 (2005) 111 – 118.

DOI: 10.1002/9780470291269.ch14

Google Scholar

[16] S.B. Bhaduri, A.C. Tas, Rapid coating of Ti6Al4V at room temperature with a calcium phosphate solution similar to 10× simulated body fluid. Journal of Materials Research 19 (2004) 2742-2749.

DOI: 10.1557/jmr.2004.0349

Google Scholar

[17] J. Jakubowicz, Electrochemically modified surface of titanium bionanomaterials, Poznan's University of Technology Publishing House, (2012).

Google Scholar