Validation of Kinematic Hardening Parameters from Different Stress States and Levels of Plastic Strain with the Use of the Cyclic Bending Test

Article Preview

Abstract:

The recent development of new lightweight sheet metal materials, like advanced high-strength steels or aluminium alloys, in combination with an increasing component complexity provides new challenges to the numerical material modelling in the FEM based process design. An auspicious approach to improve the quality of the numerical results – most notably in springback analysis – is the modelling of the so called Bauschinger effect achieved through implementation of kinematic hardening models. Within this paper the influence of the stress state and the level of pre-strain on the numerical simulation result of the advanced high strength steel DP-K45/78+Z will be analysed. For this purpose, a parameter identification of the kinematic hardening law according to Chaboche and Rousselier is performed at different pre-strains on the basis of experimental data from tension-compression tests as well as cyclic shear tests. Finally, the identified parameters are validated in a comparison between numerical and experimental results of a cyclic bending test.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

385-392

Citation:

Online since:

March 2015

Export:

Price:

* - Corresponding Author

[1] K. Roll, T. Lemke, K. Wiegand, Possibilities and strategies for simulations and compensation for springback, in: L. M. Smith, F. Pourboghrat, J. -W. Yoon, T.B. Stroughton (Edrs. ), Numisheet 2005, American Institute of Physics, Detroit, 2005, pp.295-302.

Google Scholar

[2] M.S. Aydin, L. Kessler, J. Gerlach, Springback simulation with complex hardening material models, Proc. of LS-DYNA Conference, Bamberg, Germany, (2008).

Google Scholar

[3] J. L Chaboche, G. Rousselier: On the Plastic and Viscoplastic Constitutive Equations – Part I: Rules Developed With Internal Variable Concept, J. Press. Vess. Techol. 105 (1983), pp.153-158.

DOI: 10.1115/1.3264257

Google Scholar

[4] F. Yoshida, T. Uemori, A model of large-strain cyclic plasticity describing the Bauschinger effect and workhardening stagnation, Int. J. Plasticity 18 (2002), pp.661-686.

DOI: 10.1016/s0749-6419(01)00050-x

Google Scholar

[5] M. Merklein, M. Biasutti, Forward and Reverse Simple Shear Test Experiments for Material Modeling in Forming Simulations, in: E. A. Tekkaya (Ed. ), Proc. of the 10th International Conference on Technology of Plasticity (ICTP), 2011, pp.702-707.

Google Scholar

[6] D. Staud, M. Merklein, Zug-Druck-Versuche an Miniaturproben zur Erfassung von Parametern für kinematische Verfestigungsmodelle, in: M. Borsutzki, G. Geiger (Eds. ), Werkstoffprüfung 2009: Fortschritte der Kennwertermittlung in Forschung und Praxis, Verlag Stahleisen, Düsseldorf, 2009, pp.211-218.

Google Scholar

[7] S. Suttner, M. Merklein, Characterization of the Bauschinger effect and identification of the kinematic Chaboche model by tension-compression tests and cyclic shear tests, in: Sfar, H.; Maillard, A. (Eds. ), Proc. International Deep Drawing Research Group Conf. IDDRG 2014, France, 2014, pp.125-130.

Google Scholar

[8] P.J. Armstrong, C.O. Frederick, A mathematical representation of the multiaxial Bauschinger effect, in: GEGB Report RD/B/N731 Berkeley Nuclear Laboratories, (1996).

Google Scholar

[9] J.E. Hockett, O.D. Sherby, Large strain deformation of polycrystalline metals at low homologous temperatures, J. Mech. Phys. Solids 23 (1975), pp.87-98.

DOI: 10.1016/0022-5096(75)90018-6

Google Scholar

[10] M. Merklein, M. Kaupper, M. Wieland, Umform- und Rückfederungssimulation von Leichtbau-werkstoffen – Vergleichende Betrachtung von Zug-Druck- und Wechselbiegeversuchen zur Berücksichtigung des Bauschinger-Effekts, in: EFB: EFB-Tagungsband Nr. 36: Umformen, Schneiden, Verbinden im Leichtbau, Hannover, 2013, pp.1-10.

Google Scholar

[11] F. Barlat, J.C. Brem, J.W. Yoon, K. Chung, R.E. Dick, D.J. Lege, F. Pourboghrat, S.H. Choi, E. Chu , Plane stress yield function for aluminium alloy sheets, Part I: Formulation, Int. J. Plasticity 19 (2003), pp.1297-1319.

DOI: 10.1016/s0749-6419(02)00019-0

Google Scholar