Thermal Stability of MAX Phases

Article Preview

Abstract:

The susceptibility of MAX phases to thermal dissociation at 1300-1550 °C in high vacuum has been studied using in-situ neutron diffraction. Above 1400 °C, MAX phases decomposed to binary carbide (e.g. TiCx) or binary nitride (e.g. TiNx), primarily through the sublimation of A-elements such as Al or Si, which results in a porous surface layer of MXx being formed. Positive activation energies were determined for decomposed MAX phases with coarse pores but a negative activation energy when the pore size was less than 1.0 μm. The insights for tailor-design of MAX phases with controlled thermal stability and intercalated MXenes for energy storage are addressed.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

153-158

Citation:

Online since:

June 2014

Export:

Price:

* - Corresponding Author

[1] M.W. Barsoum, The MN+1AXN phases: A new class of solids: Thermodynamically stable nanolaminates, Prog. Solid State Chem. 28 (2000) 201.

DOI: 10.1016/s0079-6786(00)00006-6

Google Scholar

[2] M.W. Barsoum and T. El-Raghy, The MAX phases: Unique new carbide and nitride materials, Am. Sci. 89 (2001) 334.

DOI: 10.1511/2001.28.736

Google Scholar

[3] W. Tian, K. Vanmeensel, P. Wang, G. Zhang, Y. Li, J. Vleugels, and O. Van der Biest, Synthesis and characterization of Cr2AlC ceramics prepared by spark plasma sintering, Mater. Lett. 61 (2007) 4442.

DOI: 10.1016/j.matlet.2007.02.023

Google Scholar

[4] M.W. Barsoum and T. El-Raghy, Synthesis and characterization of remarkable ceramic: Ti3SiC2, J. Am. Ceram. Soc. 79 (1996) (1953).

DOI: 10.1111/j.1151-2916.1996.tb08018.x

Google Scholar

[5] I.M. Low, S.K. Lee, B.R. Lawn and M.W. Barsoum, Contact damage accumulation in Ti3SiC2, J. Am. Ceram. Soc. 81 (1998) 225.

Google Scholar

[6] I.M. Low, Vickers contact damage of micro-layered Ti3SiC2, J. Eur. Ceram. Soc. 18 (1998) 709.

Google Scholar

[7] I.M. Low and Z. Oo, Diffraction studies of a novel Ti3SiC2-TiC system with graded interfaces, J. Aust. Ceram. Soc. 38 (2002) 112.

Google Scholar

[8] I.M. Low, Depth-profiling of phase composition in a novel Ti3SiC2-TiC system with graded interfaces, Mater. Lett. 58 (2004) 927.

DOI: 10.1016/j.matlet.2003.07.038

Google Scholar

[9] I.M. Low and W.K. Pang, Kinetics of decomposition in MAX phases at elevated temperature, Mater. Aust. Mag. 6 (2011) 33-35.

Google Scholar

[10] I.M. Low, Z. Oo and K.E. Prince, Effect of vacuum annealing on the phase stability of Ti3SiC2, J. Am. Ceram. Soc. 90 (2007) 2610.

Google Scholar

[11] Z. Oo, I.M. Low and B.H. O'Connor, Dynamic neutron diffraction study of the thermal stability of Ti3SiC2 in air and argon, Physica B 385-386 (2006) 499.

DOI: 10.1016/j.physb.2006.05.255

Google Scholar

[12] W.K. Pang, I.M. Low, B.H. O'Connor, . V.K. Peterson, J. Studer, and J.P. Palmquist, et al., Diffraction study of high-temperature thermal dissociation of Maxthal Ti2AlC in vacuum, J. Alloys Compds. 509 (2010) 172.

DOI: 10.1016/j.jallcom.2010.09.019

Google Scholar

[13] W.K. Pang, I.M. Low, B.H. O'Connor, A.J. Studer, V.K. Peterson, Z.M. Sun and J.P. Palmquist, Comparison of thermal stability in MAX 211 and 312 phases at 1500°C in vacuum, J. Physics: Conference Series, 251 (2010) 012025.

DOI: 10.1088/1742-6596/251/1/012025

Google Scholar

[14] W.K. Pang and I.M. Low, Kinetics of phase decomposition in MAX phases - A comparative diffraction study, J. Aust. Ceram. Soc. 45 (2009) 39.

Google Scholar

[15] W.K. Pang, I.M. Low and Z.M. Sun, In-situ high-temperature diffraction study of thermal dissociation of Ti3AlC2 in vacuum, J Am. Ceram. Soc. 93 (2010) 2871.

DOI: 10.1111/j.1551-2916.2010.03764.x

Google Scholar

[16] I.M. Low, W.K. Pang, S. Kennedy and R.I. Smith, High-temperature thermal stability of Ti2AlN and Ti4AlN3: A comparative diffraction study, J. Eur. Ceram. Soc. 31 (2011) 159.

DOI: 10.1016/j.jeurceramsoc.2010.09.014

Google Scholar

[17] H. Zhang, Y. Zhou, Y. Bao and M. Li, Titanium silicon carbide pest induced by nitridation, J. Am. Ceram. Soc. 91 (2008) 494.

Google Scholar

[18] Feng, T. Orling and Z.A. Munir, Field-activated pressure-assisted combustion synthesis of polycrystalline Ti3SiC2, J. Mater. Res. 14 (1999) 925.

DOI: 10.1557/jmr.1999.0124

Google Scholar

[19] N.F. Gao, Y. Miyamoto and D. Zhang, On physical and thermochemical properties of high-purity Ti3SiC2, Mater. Lett. 55 (2002) 61.

Google Scholar

[20] J. Emmerlich, D. Music, P. Eklund, O. Wilhelmsson, U. Jansson, J.M. Schneider, H. Hogberg and L. Hultman, Thermal stability of Ti3SiC2 thin films, Acta Mater. 55 (2007) 1479.

DOI: 10.1016/j.actamat.2006.10.010

Google Scholar

[21] M.W. Barsoum and T. El-Raghy, Reaction of Al with Ti3SiC2 in the 800–1000°C temperature range, Mater. Sci. Eng. A 298 (2001) 174.

DOI: 10.1016/s0921-5093(00)01281-8

Google Scholar

[22] N. Tzenov, M.W. Barsoum and T. El-Raghy, Influence of small amounts of Fe and V on the synthesis and stability of Ti3SiC2, J. Eur. Ceram. Soc. 20 (2000) 801.

DOI: 10.1016/s0955-2219(99)00166-1

Google Scholar

[23] R. Radakrishnan, J.J. Williams and M. Akinc, Synthesis and high-temperature stability of Ti3SiC2, J. Alloys Compd. 285 (1999) 85.

Google Scholar

[24] A.K. Galwey and M.E. Brown, Thermochimica Acta. 386 (2002) 91.

Google Scholar

[25] H.B. Callen, Thermodynamics and An Introduction to Thermostatistics. Wiley, (1985).

Google Scholar

[26] M.R. Lukatskaya, O. Mashtalir, C.E. Ren, Y. Dall' Agnese, P. Rozier, P.L. Taberna, M. Naguib, P. Simon, M.W. Barsoum and Y. Gogotsi, Cation intercalation and high volumetric capacitance of 2D TiC, Science 341 (2013) 1502-1505.

DOI: 10.1126/science.1241488

Google Scholar

[27] O. Mashtalir, M. Naguib, V.N. Mochalin, Y. Dall' Agnese, M. Heon, M.W. Barsoum and Y. Gogotsi, Intercalation and delamination of layered carbides and carbonitrides, Nature Commun. 4 (2013) 1716-(1921).

DOI: 10.1038/ncomms2664

Google Scholar