Non-Linear Vibro-Acoustic Wave Modulations - Analysis of Different Types of Low-Frequency Excitation

Article Preview

Abstract:

Signal processing method based on wavelet transform used in non-linear acoustic test is presented in the paper. The method is applied for sidebands identification in response signal acquired during vibro-acoustic modulation test of impacted carbon fiber reinforced plate (CFRP). The plate was impacted with known energy using drop-weight testing machine. The modulation effect in investigated specimen results from the interaction of low and high frequency excitation with damage. The paper investigates different than mono-harmonic low-frequency excitation usually used in non-linear acoustics tests. Application of aperiodic low-frequency excitation signal allows to omit the modal test, where natural frequency of the structure are estimated. However, this requires the use of dedicated signal processing methods.

You might also be interested in these eBooks

Info:

Periodical:

Key Engineering Materials (Volumes 569-570)

Pages:

924-931

Citation:

Online since:

July 2013

Export:

Price:

[1] I. Yu. Solodov, N. Krohn , G. Busse. CAN: an example of nonclassical acoustic nonlinearity in solids. Ultrasonics. 2002, Vol. 40, p.621–625.

DOI: 10.1016/s0041-624x(02)00186-5

Google Scholar

[2] Bruneau, M. and Potel,C. Materials and Acoustics Handbook. s. l. : Wiley-ISTE, (2009).

Google Scholar

[3] Klepka A., Staszewski W. J., Jenal R. B., Szwedo M, Uhl T., Iwaniec J. Nonlinear acoustics for fatigue crack detection – experimental investigations of vibro-acoustic wave modulations. Structural Health Monitoring. 2012, Vol. 11, p.197–211.

DOI: 10.1177/1475921711414236

Google Scholar

[4] B.A. Korshak, I. Yu. Solodov, E.M. Ballad. DC effects, sub-harmonics, stochasticity and 'memory', for contact acoustic non-linearity. Ultrasonics. 2002, Vol. 40, pp.707-713.

DOI: 10.1016/s0041-624x(02)00241-x

Google Scholar

[5] M. Muller, A. Sutin,R. Guyer, M. Maryline Talmant, P. Laugier, P.A. Johnson. Nonlinear resonant ultrasound spectroscopy (NRUS) applied to damage assessment in bone. The Journal of the Acoustical Society of America. 2005, Vol. 118, 6, pp.3946-3952.

DOI: 10.1121/1.2126917

Google Scholar

[6] Cantrell, J H and Yost, W T. Acoustic Harmonic Generation from Fatigue-Induced Dislocation Dipoles. Philosophical. 1994, Vol. 69, 2, pp.315-326.

DOI: 10.1080/01418619408244346

Google Scholar

[7] Y. Ohara, T. Mihara, K. Yamanaka. Effect of adhesion force between crack planes on subharmonic and DC responses in nonlinear ultrasound. Ultrasonics. 2006, Vol. 44, p.194–199.

DOI: 10.1016/j.ultras.2005.10.006

Google Scholar

[8] Morris, W L, Buck, O and Inman, R V. Acoustic harmonic generation due to fatigue damage in high-strength aluminum. Journal of Applied Physics. 1979, Vol. 50, p.6737.

DOI: 10.1063/1.325917

Google Scholar

[9] Klepka A. Staszewski, W.J., Uhl, T., Di Maio, D., Scarpa, 2 d , F. Impact Damage Detection in Composite Chiral Sandwich Panels. Key Engineering Materials. 2012, Tom 518, strony 160-167.

DOI: 10.4028/www.scientific.net/kem.518.160

Google Scholar

[10] Hu, H F, et al. Crack detection using nonlinear acoustics and piezoceramic transducers—instantaneous amplitude and frequency. Smart Mater. Struct. 2010, Vol. 19.

DOI: 10.1088/0964-1726/19/6/065017

Google Scholar

[11] Pieczonka, L., Staszewski, W.J., Aymerich, F. , Uhl, T. Analysis of nonlinear vibro-acoustic wave modulations used for impact damage detection in composite structures. Structural health monitoring 2012 : proceedings of the sixth European workshop. 2012, p.295.

DOI: 10.1002/stc.2063

Google Scholar

[12] Klepka A, Jenal R B, Staszewski W J, Uhl T. Fatigue crack detection in metallic structures using nonlinear acoustics – comparative study of piezo-based excitation. 5th ECCOMAS thematic conference on Smart structures and materials SMART'11. 2011, pp.444-451.

DOI: 10.1088/0964-1726/15/4/025

Google Scholar

[13] F. Aymerich, W.J. Staszewski. Impact damage detection in composite laminates using nonlinear acoustics. Composites Part A: Applied Science and Manufacturing. 9, 2010, Vol. 41, pp.1084-1092.

DOI: 10.1016/j.compositesa.2009.09.004

Google Scholar

[14] V. YU. Zaitsev, V.E. Gusev, B. Castagnede. Luxembourg-Gorky effect retooled for elastic waves: a mechanism and experimental evidence. Phys. Rev. Lett. 2002, Vol. 89, p.105502.

DOI: 10.1103/physrevlett.89.105502

Google Scholar

[15] V.Y. Zaitsev, V. Gusev, B. Castagnede. Observation of the Luxemburg–Gorki effect, for elastic waves. Ultrasonics. 2002, 40, p.627–631.

DOI: 10.1016/s0041-624x(02)00187-7

Google Scholar

[16] Johnson P. A., Guyer R. Nonlinear Mesoscopic Elasticity: The Complex Behaviour of Rocks, Soil, Concrete. s. l. : Wiley, (2009).

Google Scholar

[17] R.A. Guyer, K.R. McCall and K. Van Den Abeele. Slow elastic dynamics in a resonant bar of rock. Geophys Res Lett. 1998, 25, p.1585–1588.

DOI: 10.1029/98gl51231

Google Scholar

[18] V. Zaitsev, P. Sas. Dissipation in Microinhomogeneous Solids: Inherent Amplitude-Dependent losses of a Non-Hysteretical and Non-Frictional Type. Acta Acustica united with Acustica. 2000, Vol. 86, p.429.

Google Scholar

[19] Bentahar, M. and Marec, A. and El Guerjouma, R. and Thomas J.H. Nonlinear acoustic fast and slow dynamics of damaged composite materials: correlation with acoustic emission. Ultrasonics Wave Propagation In Non Homogeneous Media. 2009, Vol. 128, pp.161-171.

DOI: 10.1007/978-3-540-89105-5_14

Google Scholar

[20] Iwaniec J., Uhl, T. Staszewski, W. J., Klepka, A. Detection of changes in cracked aluminium plate determinism by recurrence analysis. Nonlinear Dynamics. 2012, strony DOI 10. 1007/s11071-012-0436-9.

DOI: 10.1007/s11071-012-0436-9

Google Scholar

[21] C. Biemans, W.J. Staszewski, C. Boller And G.R. Tomlinson. Crack Detection in Metallic Structures Using Broadband Excitation of Acousto-Ultrasonics. JOURNAL OF INTELLIGENT MATERIAL SYSTEMS AND STRUCTURES. 2001, Vol. 12, pp.589-597.

DOI: 10.1177/10453890122145366

Google Scholar

[22] Klepka, A., Uhl, T. and Vacher, P. On-line flight flutter margin detection - Algorithm and case study. Cracow : Proceedings of the 4th European Workshop on Structural Health Monitoring, (2008).

Google Scholar

[23] Klepka, A. and Uhl, T. Hardware and software tools for in - flight flutter testing. Leuven : Proceedings of ISMA 2008: International Conference on Noise and Vibration Engineering, (2008).

Google Scholar

[24] Dziedziech, K., Staszewski, W. J. and Uhl, T. Input-Output Time-Frequency Analysis of Time-Variant Systems. Leuven : Proceedings of the International conference on Noise and vibration engineering, International conference on Uncertainty in Structural Dynamics, (2012).

Google Scholar

[25] Uhl, T. and Klepka, A The use of wavelet transform for in-flight modal analysis. Leuven : Proceedings of ISMA2006: International Conference on Noise and Vibration Engineering, (2006).

Google Scholar