Influence of Anisotropic Yield Functions on Parameters of Yoshida-Uemori Model

Article Preview

Abstract:

Yoshida-Uemori model (Y-U model) can be used with any types of yield functions. The calculated stress strain response will be, however, different depending on the chosen yield function if the yield function and the effective strain definition are inappropriate. Thus several modifications to Y-U model were proposed in the 10th International Conference on Technology of Plasticity. It was ascertained that in the modified Y-U model, the same set of material parameters can be used with von Mises, Hill’s 1948, and Hill’s 1990 yield function. In this study, Yld2000-2d and Yoshida’s 6th-order polynomial type 3D yield function were examined and it was clarified that the same set of Y-U parameters can be used with these yield functions.

You might also be interested in these eBooks

Info:

Periodical:

Key Engineering Materials (Volumes 554-557)

Pages:

2440-2452

Citation:

Online since:

June 2013

Export:

Price:

[1] H. Kano, J. Hiramoto, T. Inazumi, T. Uemori, F. Yoshida, Influence of Yield Functions on Parameters of the Yoshida-Uemori model, Steel Research International 2011, Special Edition (2011) 830-835.

DOI: 10.4028/www.scientific.net/kem.554-557.2440

Google Scholar

[2] F.Yoshida, T. Uemori, A model of large-strain cyclic plasticity describing the Bauschinger effect and workhardening stagnation, International Journal of Plasticity 18 (2002) 661-686.

DOI: 10.1016/s0749-6419(01)00050-x

Google Scholar

[3] F. Yoshida, T. Uemori, A model of large-strain cyclic plasticity and its application to springback simulation, International Journal of Mechanical Sciences 45 (2003) 1687-1702.

DOI: 10.1016/j.ijmecsci.2003.10.013

Google Scholar

[4] Von R. v. Mises, Mechanik der plastischen Formänderung von Kristallen, Zeitschrift für Angewandte Mathematik und Mechanik 8 (1928) 161-185.

DOI: 10.1002/zamm.19280080302

Google Scholar

[5] R. Hill, A theory of the yielding and plastic flow of anisotropic metals, Proceedings of the Royal Society of London A193 (1948) 281-297.

Google Scholar

[6] R. Hill, Constitutive Modeling of Orthotropic Plasticity in Sheet Metals, Journal of the Mechanics and Physics of Solids (1990) 405-417.

DOI: 10.1016/0022-5096(90)90006-p

Google Scholar

[7] F. Barlat, J.C. Brem, J.W. Yoon, K. Chung, R.E. Dick, D.J. Lege, F. Pourboghrat, S.-H. Choi, E. Chu, , Plane stress yield function for aluminum alloy sheets - part 1: theory , International Journal of Plasticity 19 (2003) 1297-1319.

DOI: 10.1016/s0749-6419(02)00019-0

Google Scholar

[8] F. Yoshida, S. Tamura, T. Uemori, H. Hamasaki, A User-friendly 3D Yield Function for Steel Sheets and Its Application, Proceedings of the 8th International Conference on Numerical Simulation of 3D Sheet Metal Forming Processes (NUMISHEET2011) (2011) 807-814.

DOI: 10.1063/1.3623689

Google Scholar

[9] K. Kitayama, T. Kobayashi, T. Uemori, F. Yoshida, Elasto-plastic Behavior of IF Steel Sheet with Planar Anisotropy and Its Macro-Meso Modeling, Tetsu-to-Hagane 97 (2011) 221-229.

DOI: 10.2355/tetsutohagane.97.221

Google Scholar

[10] V. V. Toropov, A. A. Filatov, A. A. Polynkin, Multi-parameter structural optimization using FEM and multipoint explicit approximations, Structural Optimization 6 (1993) 7-14.

DOI: 10.1007/bf01743169

Google Scholar

[11] F. Yoshida, M. Urabe, V. V. Toropov, Identification of material parameters in constitutive model for sheet metals from cyclic bending tests, International Journal of Mechanical Sciences 40, 2-3 (1998) 237-249.

DOI: 10.1016/s0020-7403(97)00052-0

Google Scholar