Synthesis and Characterization of Cx-Siy-HA for Bone Tissue Engineering Application

Article Preview

Abstract:

The main goal of this work is to prepare carbon and silicon co-substituted calcium hydroxyapatite (Cx-Siy-HA) for bone tissue engineering application. This study includes the synthesis of pure powders with a controlled amount of carbonate (x) and silicate (y) ions within the apatite structure, their characterization with the establishment of database for different compositions, and the manufacture of dense bioceramics. Carbon-silicon co-substituted hydroxyapatite (C0.5-Si0.5-HA) powders are synthesized by aqueous precipitation. According to structural, spectroscopic and elemental characterizations, silicate and carbonate are included in the apatite lattice and their stoichiometries are controlled. The heat treatments under CO2 atmosphere allow the sintering of pellets without decomposition of the apatite structure.

You might also be interested in these eBooks

Info:

Periodical:

Key Engineering Materials (Volumes 529-530)

Pages:

100-104

Citation:

Online since:

November 2012

Export:

Price:

[1] J.C. Elliott, Structure and chemistry of the apatites and other calcium orthophosphates, Studies in Organic Chemistry, (1994).

Google Scholar

[2] F. Driessens, H. Schaeken, R. Verbeeck, On the mechanism of subsitution in carbonated apatites, Journal of Dental Research, 62 (1983) 455.

Google Scholar

[3] G. Montel, G. Bonel, J.C. Heughebaert, J.C. Trombe, C. Rey, New concepts in the composition, crystallization and growth of the mineral component of calcified tissues, Journal of Crystal Growth, 53 (1981) 74–99.

DOI: 10.1016/0022-0248(81)90057-9

Google Scholar

[4] C. Rey, B. Collins, T. Goehl, I.R. Dickson, M.J. Glimcher, The carbonate environment in bone mineral: A resolution-enhanced fourier transform infrared spectroscopy study, Calcified Tissue International, 45 (1989) 157–164.

DOI: 10.1007/bf02556059

Google Scholar

[5] J. Barralet, S. Best, W. Bonfield, Effect of sintering parameters on the density and microstructure of carbonate hydroxyapatite, J. Mater. Sci. -Mater. Med., 11 (2000) 719–724.

Google Scholar

[6] Z. Zyman, M. Tkachenko, CO2 gas-activated sintering of carbonated hydroxyapatites, Journal of the European Ceramic Society, 31 (2011) 241–248.

DOI: 10.1016/j.jeurceramsoc.2010.09.005

Google Scholar

[7] E.M. Carlisle, Silicon: A Possible Factor in Bone Calcification, Science, 167 (1970) 279–280.

DOI: 10.1126/science.167.3916.279

Google Scholar

[8] D. Marchat, M. Zymelka, L. Gremillard, C. Coelho, L. Joly-Pottuz, F. Babonneau, C. Esnouf, J. Chevalier, D. Bernache-Assollant, Accurate characterization of silicon-substituted hydroxyapatites powders synthesized by a new precipitation route, Acta Biomaterialia, 2012, Submitted.

DOI: 10.1016/j.actbio.2013.03.011

Google Scholar

[9] E. Landi, J. Uggeri, S. Sprio, A. Tampieri, S. Guizzardi, Human osteoblast behavior on as-synthesized SiO4 and B-CO3 co-substituted apatite, Journal of Biomedical Materials Research Part A, 94A (2010) 59–70.

DOI: 10.1002/jbm.a.32671

Google Scholar

[10] T. Huang, Y. Xiao, S. Wang, Y. Huang, X. Liu, F. Wu, Z. Gu, Nanostructured Si, Mg, CO32- Substituted Hydroxyapatite Coatings Deposited by Liquid Precursor Plasma Spraying: Synthesis and Characterization, Journal of Thermal Spray Technology, 20 (2011).

DOI: 10.1007/s11666-011-9628-y

Google Scholar

[11] D.M. Ibrahim, A.A. Mostafa, S.I. Korowash, Chemical characterization of some substituted hydroxyapatites, Chem Cent J, 5 (2011) 74.

Google Scholar

[12] N.Y. Mostafa, H.M. Hassan, O.H. Abd Elkader, Preparation and Characterization of Na+, SiO44-, and CO32- Co-Substituted Hydroxyapatite, Journal of the American Ceramic Society, 94 (2011) 1584–1590.

DOI: 10.1111/j.1551-2916.2010.04282.x

Google Scholar

[13] N.Y. Mostafa, H.M. Hassan, F.H. Mohamed, Sintering behavior and thermal stability of Na+, SiO44- and CO32- co-substituted hydroxyapatites, Journal of Alloys and Compounds, 479 (2009) 692–698.

DOI: 10.1016/j.jallcom.2009.01.037

Google Scholar

[14] J. Lafon, E. Champion, D. Bernache-Assollant, R. Gibert, A. Danna, Thermal decomposition of carbonated calcium phosphate apatites, Journal of Thermal Analysis and Calorimetry, 72 (2003) 1127–1134.

DOI: 10.1023/a:1025036214044

Google Scholar

[15] J.P. Lafon, E. Champion, D. Bernache-Assollant, Processing of AB-type carbonated hydroxyapatite Ca10-x(PO4)6-x(CO3)x(OH)2-x-2y(CO3)y ceramics with controlled composition, Journal of the European Ceramic Society, 28 (2008) 139–147.

DOI: 10.1016/j.jeurceramsoc.2007.06.009

Google Scholar

[16] J. Barralet, J. Knowles, S. Best, W. Bonfield, Thermal decomposition of synthesised carbonate hydroxyapatite, J. Mater. Sci. -Mater. Med., 13 (2002) 529–533.

Google Scholar