Experimental and Numerical Modelling of LRI Process

Article Preview

Abstract:

The aim of this study is to gain knowledge concerning the process and its physics, as well as to become able to optimize the fabrication of large and complex composite parts in aeronautics appli- cations. Composite materials have many advantages and the use of this technology is increasing in the aeronautic industry. In the L.R.I. process, dry textile preforms are impregnated by a thermoset liquid resin. All the elements are enclosed in a vacuum bag of known pressure. Once preforms are totally impregnated, the resin system begins the curing reaction to obtain the composite part. This study contains two major sections. Firstly, numerical modeling was done with the Pam- Rtm nite element code to determine the evolution of the ow front during the infusion. Simulations were performed to analyse the infusion of sandwich composite parts with a perforate foam, which allows the inferior skin to be impregnated in the same operation. Secondly, experimental work was conducted to conrm the numerical results.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

121-130

Citation:

Online since:

July 2010

Export:

Price:

[1] P. Celle. Couplage fluide/milieux poreux en grandes déformations pour la modélisation des procédés d'élaboration par infusion. Thèse de doctorat, Ecole Nationale Supérieure des Mines de Saint- Etienne, (2006).

Google Scholar

[2] T. Ouahbi, A. Saouab, J. Breard, P. Ouagne, S. Chatel. Modelling of hydro-mechanical coupling in infusion processes. Composites Part A, Vol. 38, pp.1646-1654, (2007).

DOI: 10.1016/j.compositesa.2007.03.002

Google Scholar

[3] S. Comas-Cardona : Modélisation, simulation et contrôle du couplage hydro-mécanique pour le moulage de composites. Thèse de doctorat, Université des Sciences et Technologies de Lille, (2005).

Google Scholar

[4] J. Echaabi, M. Ouadi Bensalah : Simulation du front d'écoulement dans les procédés de moulage des composites liquides. C.R. Mécanique 333, pp.585-591, (2005).

DOI: 10.1016/j.crme.2005.05.004

Google Scholar

[5] H. Talvensaari, E. Ladstatter, W. Billinger, Permeability of stitched preform packages, Composite Structures Vol. 71, pp. 371_377, (2005).

DOI: 10.1016/j.compstruct.2005.09.033

Google Scholar

[6] J.M. Lawrence, J. Barr, R. Karmakar, S.G. Advani, Characterization of preform permeability in the presence of race tracking, Composites: Part A Vol. 35, pp. 1393_1405, (2004).

DOI: 10.1016/j.compositesa.2004.05.002

Google Scholar

[7] S. Song, K. Chung, T.J. Kang, J.R. Youn, Prediction of permeability tensor for three dimensional circular braided preform by applying a finite volume method to a unit cell, Composites Science and Technology Vol. 64, pp. 1629_1636, (2004).

DOI: 10.1016/j.compscitech.2003.11.008

Google Scholar

[8] M.A. Choi, M.H. Lee, J. Chang, S.J. Lee, Permeability modeling of fibrous media in composite processing, J. Non-Newtonian Fluid Mech. Vol. 79, pp.585-598, (1998).

DOI: 10.1016/s0377-0257(98)00120-7

Google Scholar

[9] S. Morel, C. Binetruy, P. Krawczak : Compression des renforts dans les procédés LCM : 1. Analyse mécanique et microstructurale. Revue des Composites et de Matériaux Avancés, Vol. 12, n°2, pp.243-263, (2002).

DOI: 10.3166/rcma.12.243-263

Google Scholar

[10] J.C. CharpentieR : Eléments de mécanique des fluides : Application aux milieux poreux. Les Techniques de l'Ingénieurs, J1-065 : 12, (2004).

DOI: 10.51257/a-v1-j1065

Google Scholar

[11] R. Brault. Mémoire de fin d'études. Modélisation du procédé d'infusion de composites, Ecole Nationale d'Ingénieurs de Tarbes, (2008).

Google Scholar