Argon-Oxygen Post-Discharge Treatment of Hexatriacontane: Heat Transfer between Gas Phase and Sample

Article Preview

Abstract:

Characterization of the interaction between an argon-oxygen post-discharge and hexatriacontane (C36H74) is carried out. Optical emission spectroscopy using the atmospheric band O2 (b1Σg +, v=0  X3Σg −, v’=0) at 760 nm gives simultaneously the evolution of the O(3P) concentration above the surface and the gas temperature by simulation of the rotational spectrum of the transition. Surface reactions contribute to the heating in the sample and to a substantial increase in the gas temperature. Finally, a strong correlation between the time evolutions of the transition intensity and the sample temperature is observed, suggesting that O(3P) is the main reactive species that produces the heating and the chemical changes in the HTC.

You might also be interested in these eBooks

Info:

Periodical:

Key Engineering Materials (Volumes 373-374)

Pages:

421-425

Citation:

Online since:

March 2008

Export:

Price:

[1] L. Rongzhi, Y. Lin and W.M. Yiu: Composites Part A: Applied Science and Manufacturing Vol. 28A (1997), pp.73-86.

Google Scholar

[2] F.D. Egitto and L.J. Matienzo: IBM Journal of Research and Development Vol. 38 (1994), pp.423-439.

Google Scholar

[3] K.R. Stewart, G.M. Whiteshides, H.P. Godfried and I.F. Silvera: Review of Scientific Instruments Vol. 57 (1986), pp.1381-1383.

Google Scholar

[4] P.K. Chu, J.Y. Chen, L.P. Wang and N. Huang: Materials Science & Engineering R: Reports Vol. R36 (2002), pp.143-206.

Google Scholar

[5] M.V. Risbud, R. Dabhade, S. Gangal and R.R. Bhonde: Journal of Biomaterials Science, Polymer Edition Vol. 13 (2002), pp.1067-1080.

DOI: 10.1163/156856202320813792

Google Scholar

[6] J. Hong, F. Truica-Marasescu, L. Martinu and M.R. Wertheimer: Plasmas and Polymers Vol. 7 (2002), pp.245-260.

DOI: 10.1023/a:1019938424698

Google Scholar

[7] S. Moreau, M. Moisan, M. Tabrizan, J. Barbeau, J. Pelletier, A. Ricard and L. -H. Yania: Journal of Applied Physics Vol. 88 (2000), pp.1166-1174.

Google Scholar

[8] N. Philip, B. Saoudi, M. -C. Crevier, M. Moisan, J. Barbeau and J. Pelletier : IEEE Transactions on Plasma Science Vol. 30 (2002) 1429-1436.

DOI: 10.1109/tps.2002.804203

Google Scholar

[9] A. Ricard, M. Moisan and S. Moreau: Journal of Physics D: Applied Physics Vol. 34 (2001), pp.1203-1212.

Google Scholar

[10] A.C. Fozza, A. Bergeron, J.E. Klemberg-Sapieha and M.R. Wertheimer: Plasma Deposition and Treatment of Polymers. Symposium (1999) 109-14. Edited by W. W Lee, R. d'Agostino, M.R. Wertheimer.

DOI: 10.1023/a:1021853026619

Google Scholar

[11] A.C. Fozza, J. Roch, J.E. Klemberg-Sapieha, A. Kruse, A. Holländer and M.R. Wertheimer: Nuclear Instruments & Methods in Physics Research, Section B: Beam Interactions with Materials and Atoms, Vol. 131 (1997), pp.205-210.

DOI: 10.1016/s0168-583x(97)00154-7

Google Scholar

[12] M.R. Wertheimer, A.C. Fozza and A. Holländer: Nuclear Instruments & Methods in Physics Research, Section B: Beam Interactions with Materials and Atoms Vol. 151 (1999), pp.65-75.

DOI: 10.1016/s0168-583x(99)00073-7

Google Scholar

[13] V. Hody, T. Belmonte, T. Czerwiec, G. Henrion and J.M. Thiébaut: Thin Solid Films, Vol. 506-507 (2006), pp.212-216.

DOI: 10.1016/j.tsf.2005.08.016

Google Scholar

[14] V. Hody and T. Belmonte, C. Pintassilgo, F. Poncin-Epaillard, T. Czerwiec, G. Henrion, Y. Segui and J. Loureiro: Plasma Chemistry and Plasma Processing, Vol. 26 (2006), pp.251-266.

DOI: 10.1007/s11090-006-9017-3

Google Scholar

[15] M. Touzeau, M. Vialle, A. Zellagui, G. Gousset, M. Lefebvre and M. Pealat: Journal of Physics D: Applied Physics, Vol. 24 (1991), pp.41-47.

DOI: 10.1088/0022-3727/24/1/008

Google Scholar