Thermomechanical Properties of Nanosilica Reinforced PEEK Composites

Article Preview

Abstract:

The nano-sized silica particulates reinforced poly(ether ether ketone) (PEEK) composites were fabricated by means of simple compression molding technique. The nano-sized silica, measuring 30 nm in size, was firstly modified by surface-pretreatment with stearic acid. The thermomechanical properties of the resulting PEEK/SiO2 nanocomposites were measured using dynamic mechanical analysis (DMA) and thermal mechanical analysis (TMA). The TMA results show that the coefficient of thermal expansion (CTE) becomes lowered when the content of the nanosilica increases. Furthermore, the CTE of the modified-silica filled PEEK nanocomposites shows higher CTE values, as compared with those of the unmodified counterparts. The dynamic modulus of the PEEK nanocomposites shows over 40% increment at elevated temperatures from 100-250oC, indicating the apparent improvement of elevated temperature mechanical properties.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

15-20

Citation:

Online since:

October 2007

Export:

Price:

[1] R. N. Rothon: Adv. Polymer Sci. Vol. 139 (1999), p.67.

Google Scholar

[2] R. N. Rothon: Adhesion Vol. 64 (1997), P. 87.

Google Scholar

[3] M. Sumita, T. Shizuma, K. Miyasaka, and K. Ishikawa: Journal of Macromolecular Science, Physics Vol. B22 (1983), p.601.

Google Scholar

[4] Qi-Hua Wang, Jinfen Xu, Weichang Shen, and Weimin Liu: Wear Vol. 196 (1996), p.82.

Google Scholar

[5] Qi-Hua Wang, Qunji Xue, Hurwen Liu, Weichang Shen, and Jinfen Xu: Wear Vol. 198 (1996), p.216.

Google Scholar

[6] Qi-Hua Wang, JinFex Xu, Weichang Shen, and Qunji Xue: Wear Vol. 209 (1997), p.316.

Google Scholar

[7] M. C. Kuo, C. M. Tsai, J. C Huang, and M. Chen: Materials Chemistry and Physics Vol. 90 (2005), p.185.

Google Scholar

[8] T. E. Attwood, P. C. Dawson, J. L. Freeman, L. R. J. Hoy, J. B. Rose, and P. A. Staniland: Polymer Vol. 22 (1981), p.1096.

DOI: 10.1016/0032-3861(81)90299-8

Google Scholar

[9] P. K. Goyal, Y. S. Negi, and A. N. Tiwari: European Polymer Journal Vol. 41 (2005), p. (2034).

Google Scholar

[10] P. Cassagnau: Polymer Vol. 44 (2003), p.2455.

Google Scholar

[11] M. C. Kuo, J. C Huang, and M. Chen: Materials Chemistry and Physics Vol. 100 (2006), on line.

Google Scholar

[12] S. H. Ahn, S. H. Kim, and S. G. Lee: Journal of Applied Polymer Science Vol. 94 (2004), p.812.

Google Scholar

[13] V. A. Soloukhin, W. Posthumus, J.C.M. Brokken-Zijp, J. Loos, and G. de With: Polymer Vol. 43 (2002), p.6169.

DOI: 10.1016/s0032-3861(02)00542-6

Google Scholar

[14] C. M. Liauw, C. G. Lees, S. J. Hurst, and S. Ali: Composites Vol. A 29 (1998), p.1313.

Google Scholar