Formation of Chitosan Nanoparticles Using Deacetylated Chitin Isolated from Freshwater Algae and Locally Synthesized Zeolite A and their Influence on Cancer Cell Growth

Article Preview

Abstract:

This work reports the isolation and characterization of chitin from green algae using XRD, 13C CP/MAS NMR, FTIR and Microscopy. The XRD diffraction pattern confirmed orthorhombic structure of the crystalline polysaccharide, whereas the FTIR spectra revealed strong absorption bands at 896.9 cm-1 and 852 cm-1 typical of C–H axial and C–H equatorial vibrations within the anomeric center of the glucopyranosicyclic moiety. Another strong absorption band was observed at 1039.9 cm-1 and was assigned to C–O–C, C–O stretching bands. The purity and structure of the deacetylated chitin was confirmed using 13C NMR, showing overlapping peaks around 65 ppm assigned to both the sugar carbon at C2, as well as a methylene carbon at C6. An intense peak at 74 ppm is assigned to C3 and C5 with corresponding resonances at 81 and 104 ppm assigned to C4 and C1 respectively. Zeolite/Chitosan nanocomposites were synthesized by ionic cross-linking of chitosan with sodium tripolyphosphate. Chitosan nanoparticles and LTA of different concentrations were incubated with HeLa cancer cells to investigate their cytotoxicity effects. The exposure of the cells to chitosan nanoparticles resulted in a decreased in cell growth and this was concentration-dependent. Our results revealed the utility of locally available materials to produce new biodegradable nanoparticles to investigate their biological nanotoxicity.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

156-170

Citation:

Online since:

July 2017

Export:

Price:

* - Corresponding Author

[1] J. Nunn, Ancient Egyptian Medicine, London: Red River Books, ( 2002).

Google Scholar

[2] G. Cik, H. Bujdakova, F. Sersen, Study of fungicidal and antibacterial effect of the Cu(II)-complexes of thiophene oligomers synthesized in ZSM-5 zeolite channels, Chemosphere, 44 (2001) 313-319.

DOI: 10.1016/s0045-6535(00)00306-4

Google Scholar

[3] K. Kawahara, K. Tsuruda, M. Morishita, M. Uchida, Antibacterial effect of silver-zeolite on oral bacteria under anaerobic conditions, Dent. Mater., 16 (2000) 452-455.

DOI: 10.1016/s0109-5641(00)00050-6

Google Scholar

[4] P.J. Leggo, B. Ledesert, G. Christie, The role of clinoptilolite in organo-zeolitic-soil systems used for phytoremediation, The Science of the total environment, 363 (2006) 1-10.

DOI: 10.1016/j.scitotenv.2005.09.055

Google Scholar

[5] H. Nikawa, T. Yamamoto, T. Hamada, M.B. Rahardjo, H. Murata, S. Nakanoda, Antifungal effect of zeolite-incorporated tissue conditioner against Candida albicans growth and/or acid production, J. Oral Rehab., 24 (1997) 350-357.

DOI: 10.1111/j.1365-2842.1997.tb00339.x

Google Scholar

[6] S. Adamaref, W. An, M.O. Jarligo, T. Kuznicki, S.M. Kuznicki, Natural clinoptilolite composite membranes on tubular stainless steel supports for water softening, Water Sci. Technol., 70 (2014) 1412-1418.

DOI: 10.2166/wst.2014.385

Google Scholar

[7] A.H. Alwash, A.Z. Abdullah, N. Ismail, Zeolite Y encapsulated with Fe-TiO2 for ultrasound-assisted degradation of amaranth dye in water, J. Hazard Mater., 233-234 (2012) 184-193.

DOI: 10.1016/j.jhazmat.2012.07.021

Google Scholar

[8] Y.E. Benkli, M.F. Can, M. Turan, M.S. Celik, Modification of organo-zeolite surface for the removal of reactive azo dyes in fixed-bed reactors, Water Res., 39 (2005) 487-493.

DOI: 10.1016/j.watres.2004.10.008

Google Scholar

[9] S. Moharami, M. Jalali, Phosphorus leaching from a sandy soil in the presence of modified and un-modified adsorbents, Environmental monitoring and assessment, 186 (2014) 6565-6576.

DOI: 10.1007/s10661-014-3874-7

Google Scholar

[10] N. Ninan, M. Muthiah, I.K. Park, A. Elain, T.W. Wong, S. Thomas, Y. Grohens, Faujasites incorporated tissue engineering scaffolds for wound healing: in vitro and in vivo analysis, ACS Appl. Mater. Interfaces, 5 (2013) 11194-11206.

DOI: 10.1021/am403436y

Google Scholar

[11] D.G. Seifu, T.T. Isimjan, K. Mequanint, Tissue engineering scaffolds containing embedded fluorinated-zeolite oxygen vectors, Acta Biomater., 7 (2011) 3670-3678.

DOI: 10.1016/j.actbio.2011.06.010

Google Scholar

[12] J.D. Rimer, R.F. Lobo, D.G. Vlachos, Physical basis for the formation and stability of silica nanoparticles in basic solutions of monovalent cations, Langmuir, 21 (2005) 8960-8971.

DOI: 10.1021/la0511384

Google Scholar

[13] N. Keshavarzi, F. Mashayekhy Rad, A. Mace, F. Ansari, F. Akhtar, U. Nilsson, L. Berglund, L. Bergstrom, Nanocellulose-Zeolite Composite Films for Odor Elimination, ACS Appl. Mater. Interfaces, 7 (2015) 14254-14262.

DOI: 10.1021/acsami.5b02252

Google Scholar

[14] G. Abellan, C. Marti-Gastaldo, A. Ribera, E. Coronado, Hybrid Materials Based on Magnetic Layered Double Hydroxides: A Molecular Perspective, Acc Chem. Res., 48 (2015) 1601-1611.

DOI: 10.1021/acs.accounts.5b00033

Google Scholar

[15] M. Soheilmoghaddam, M.U. Wahit, W. Tuck Whye, N. Ibrahim Akos, R. Heidar Pour, A. Ali Yussuf, Bionanocomposites of regenerated cellulose/zeolite prepared using environmentally benign ionic liquid solvent, Carbohydr. Polym., 106 (2014) 326-334.

DOI: 10.1016/j.carbpol.2014.02.085

Google Scholar

[16] K. Shameli, M.B. Ahmad, M. Zargar, W.M. Yunus, N.A. Ibrahim, Fabrication of silver nanoparticles doped in the zeolite framework and antibacterial activity, Int. J. Nanomedicine, 6 (2011) 331-341.

DOI: 10.2147/ijn.s16964

Google Scholar

[17] J. Kugbe, N. Matsue, T. Henmi, Synthesis of Linde type A zeolite-goethite nanocomposite as an adsorbent for cationic and anionic pollutants, J. Hazard Mater., 164 (2009) 929-935.

DOI: 10.1016/j.jhazmat.2008.08.080

Google Scholar

[18] A. Goldbach, M.L. Saboungi, Selenium/zeolite Y nanocomposites, Acc Chem Res, 38 (2005) 705-712.

DOI: 10.1021/ar040282y

Google Scholar

[19] G.P. Barbosa, H.S. Debone, P. Severino, E.B. Souto, C.F. da Silva, Design and characterization of chitosan/zeolite composite films-Effect of zeolite type and zeolite dose on the film properties, Mater Sci Eng C Mater. Biol. Appl., 60 (2016).

DOI: 10.1016/j.msec.2015.11.034

Google Scholar

[20] Y.L. Hu, W. Qi, F. Han, J.Z. Shao, J.Q. Gao, Toxicity evaluation of biodegradable chitosan nanoparticles using a zebrafish embryo model, Int. J Nanomedicine, 6 (2011) 3351-3359.

DOI: 10.2147/ijn.s25853

Google Scholar

[21] J.W. Rhim, S.I. Hong, H.M. Park, P.K. Ng, Preparation and characterization of chitosan-based nanocomposite films with antimicrobial activity, J. Agric. Food Chem., 54 (2006) 5814-5822.

DOI: 10.1021/jf060658h

Google Scholar

[22] H. Greer, P.S. Wheatley, S.E. Ashbrook, R.E. Morris, W. Zhou, Early stage reversed crystal growth of zeolite A and its phase transformation to sodalite, J. Am. Chem. Soc., 131 (2009) 17986-17992.

DOI: 10.1021/ja907475z

Google Scholar

[23] M.H. Zawawi, M.H. Idris, A.H. Kamal, W.S. King, Seaweed composition from Bintulu coast of Sarawak, Malaysia, Pakistan journal of biological sciences : PJBS, 17 (2014) 1007-1014.

DOI: 10.3923/pjbs.2014.1007.1014

Google Scholar

[24] P.M. Meirelles, G.M. Amado-Filho, G.H. Pereira-Filho, H.T. Pinheiro, R.L. de Moura, J.C. Joyeux, E.F. Mazzei, A.C. Bastos, R.A. Edwards, E. Dinsdale, R. Paranhos, E.O. Santos, T. Iida, K. Gotoh, S. Nakamura, T. Sawabe, C.E. Rezende, L.M. Gadelha, Jr., R.B. Francini-Filho, C. Thompson, F.L. Thompson, Baseline Assessment of Mesophotic Reefs of the Vitoria-Trindade Seamount Chain Based on Water Quality, Microbial Diversity, Benthic Cover and Fish Biomass Data, PloS one, 10 (2015).

DOI: 10.1371/journal.pone.0130084

Google Scholar

[25] T. Adesalu, M. Bagbe, D. Keyede, Hydrochemistry and phytoplankton composition of two tidal creeks in South-Western Nigeria, Revista de biologia tropical, 58 (2010) 827-840.

DOI: 10.15517/rbt.v58i2.5249

Google Scholar

[26] A.K. Silva, D. Letourneur, C. Chauvierre, Polysaccharide nanosystems for future progress in cardiovascular pathologies, Theranostics, 4 (2014) 579-591.

DOI: 10.7150/thno.7688

Google Scholar

[27] N.L. Pearlmutter, C.A. Lembi, Localization of chitin in algal and fungal cell walls by light and electron microscopy, The journal of histochemistry and cytochemistry : official journal of the Histochemistry Society, 26 (1978) 782-791.

DOI: 10.1177/26.10.722047

Google Scholar

[28] D.H. Ngo, S.K. Kim, Sulfated polysaccharides as bioactive agents from marine algae, International J. Bio. Macro., 62 (2013) 70-75.

DOI: 10.1016/j.ijbiomac.2013.08.036

Google Scholar

[29] X. Zhou, J. Liu, B. Yang, X. Lin, X.W. Yang, Y. Liu, Marine natural products with anti-HIV activities in the last decade, Curr. Med. Chem., 20 (2013) 953-973.

DOI: 10.2174/0929867311320070009

Google Scholar

[30] S.S. Bandyopadhyay, M.H. Navid, T. Ghosh, P. Schnitzler, B. Ray, Structural features and in vitro antiviral activities of sulfated polysaccharides from Sphacelaria indica, Phytochemistry, 72 (2011) 276-283.

DOI: 10.1016/j.phytochem.2010.11.006

Google Scholar

[31] A. Shimotoyodome, S. Meguro, T. Hase, I. Tokimitsu, T. Sakata, Sulfated polysaccharides, but not cellulose, increase colonic mucus in rats with loperamide-induced constipation, Digestive diseases and sciences, 46 (2001) 1482-1489.

DOI: 10.1023/a:1010644021888

Google Scholar

[32] K.M. Wee, T.N. Rogers, B.S. Altan, S.A. Hackney, C. Hamm, Engineering and medical applications of diatoms, J. nano. Nanotechno., 5 (2005) 88-91.

Google Scholar

[33] G. Archana, K. Sabina, S. Babuskin, K. Radhakrishnan, M.A. Fayidh, P.A. Babu, M. Sivarajan, M. Sukumar, Preparation and characterization of mucilage polysaccharide for biomedical applications, Carbohydr. Polym., 98 (2013) 89-94.

DOI: 10.1016/j.carbpol.2013.04.062

Google Scholar

[34] M.A. Rahman, J. Halfar, First evidence of chitin in calcified coralline algae: new insights into the calcification process of Clathromorphum compactum, Scientific Reports, 4 (2014) 6162.

DOI: 10.1038/srep06162

Google Scholar

[35] X. Wang, B. Xing, Importance of structural makeup of biopolymers for organic contaminant sorption, Env. Sci. & Techno., 41 (2007) 3559-3565.

DOI: 10.1021/es062589t

Google Scholar

[36] E.K. Tiburu, Heidimarie N.A. Fleischer, H. N.A., Aidoo, E.O., Salifu, A.A., Asimeng, B. O., and Zhou, H., Crystallization of Linde Type A Nanomaterials at Two Temperatures Exhibit Differential Inhibition of HeLa Cervical Cancer Cells In Vitro, J. Biom. Biomatr. Biomed. Eng., 28 (2016).

DOI: 10.4028/www.scientific.net/jbbbe.28.66

Google Scholar

[37] G. Cárdenas, Cabrera, G, E. Taboada, S.P. Miranda, Chitin Characterization by SEM, FTIR, XRD, and 13C Cross Polarization/Mass Angle Spinning NMR, J. Appl. Poly. Sci., , 93 (2004) 1876 –1885.

DOI: 10.1002/app.20647

Google Scholar

[38] H. Ehrlich, M. Krautter, T. Hanke, P. Simon, C. Knieb, S. Heinemann, H. Worch, First evidence of the presence of chitin in skeletons of marine sponges. Part II. Glass sponges (Hexactinellida: Porifera), Journal of experimental zoology. Part B, Mol. and Dev. Evol., 308 (2007).

DOI: 10.1002/jez.b.21174

Google Scholar

[39] H. Ehrlich, M. Maldonado, K.D. Spindler, C. Eckert, T. Hanke, R. Born, C. Goebel, P. Simon, S. Heinemann, H. Worch, First evidence of chitin as a component of the skeletal fibers of marine sponges. Part I. Verongidae (demospongia: Porifera), J. Exp. Zoo., Part B, Mol. Dev. Evol., 308 (2007).

DOI: 10.1002/jez.b.21156

Google Scholar

[40] G.A. Lorigan, P.C. Dave, E.K. Tiburu, K. Damodaran, S. Abu-Baker, E.S. Karp, W.J. Gibbons, R.E. Minto, Solid-state NMR spectroscopic studies of an integral membrane protein inserted into aligned phospholipid bilayer nanotube arrays, J. Am. Chem. Soc., 126 (2004).

DOI: 10.1021/ja047317+

Google Scholar

[41] T.A. Cross, Solid-state nuclear magnetic resonance characterization of gramicidin channel structure, Methods in Enzymol., 289 (1997) 672-696.

DOI: 10.1016/s0076-6879(97)89070-2

Google Scholar

[42] B.S. Somashekar, P. Kamarajan, T. Danciu, Y.L. Kapila, A.M. Chinnaiyan, T.M. Rajendiran, A. Ramamoorthy, Magic angle spinning NMR-based metabolic profiling of head and neck squamous cell carcinoma tissues, J. Proteome Research, 10 (2011).

DOI: 10.1021/pr200800w

Google Scholar

[43] M.L. Duarte,M. C. Ferreira, M.R. Marvão, J. Rocha, Determination of the degree of acetylation of chitin materials by 13C CP/MAS NMR spectroscopy, Int. J. Biol. Macromol., 28(2001) 359-363.

DOI: 10.1016/s0141-8130(01)00134-9

Google Scholar