Electron-Energy-Loss Spectra of Free-Standing Silicene

Article Preview

Abstract:

Silicene is becoming one of the most important two-dimensional materials. In this work, EEL Spectra were calculated for α-silicene (flat), and β-silicene (low-buckled, and theoretically the most stable). Band structures were determined using the semi-empirical Tight-Binding Method considering second nearest neighbors, sp3 model, Harrison's rule, and Slater-Koster parameterization. The dielectric function was calculated within the Random Phase Approximation and a space discretization scheme. We found that, compared to bulk Si, additional resonances appear which are red-shifted. Buckling gives rise to a richer structure at low energy.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

1-7

Citation:

Online since:

June 2014

Export:

Price:

* - Corresponding Author

[1] R. Saito, Gene Dresselhaus, Mildred S. Dresselhaus, Physical Properties of Carbon Nanotubes, Imperial College, London, United Kingdom, 1998.

Google Scholar

[2] S. Lebègue and O. Eriksson, Electronic structure of two-dimensional crystals from ab initio theory, Phys. Rev. B 79 (2009) 115409.

DOI: 10.1103/physrevb.79.115409

Google Scholar

[3] S. Cahangirov, M. Topsakal, E. Aktürk, H. Şahin, and S. Ciraci, Two- and One-Dimensional Honeycomb Structures of Silicon and Germanium, Phys. Rev. Letts. 102 (2009) 236804.

DOI: 10.1103/physrevlett.102.236804

Google Scholar

[4] A. Kara, H. Enriquez, A. P. Seitsonen, L. L. Y. Voon, S. Vizzini, B. Aufray, H. Oughaddou, A review on silicene - New candidate for electronics, Surf. Sci. Rep. 67 (2012) 1-18.

DOI: 10.1016/j.surfrep.2012.01.001

Google Scholar

[5] E. Scalise, M. Houssa, G. Pourtois, B. van der Broek, V. Afanas'ev, A. Stesmans, Vibrational properties of silicene and germanene, Nano Res. 6 (2013) 19-28.

DOI: 10.1007/s12274-012-0277-3

Google Scholar

[6] M. Houssa, G. Pourtois, V. V. Afanasev, A. Stesmans, Can silicon behave like graphene? A first principles study, Appl. Phys. Letts. 97 (2010) 112106.

DOI: 10.1063/1.3489937

Google Scholar

[7] B. Lalmi, H. Oughaddou, H. Enriquez, A. Kara, S. Vizzini, B. Ealet, B. Aufray, Epitaxial growth of a silicene sheet, Appl. Phys. Letts. 97 (2010) 223109.

DOI: 10.1063/1.3524215

Google Scholar

[8] L. Meng, Yeliang Wang, Lizhi Zhang, Shixuan Du, Rongting Wu, Linfei Li, Yi Zhang, Geng Li, Haitao Zhou, Werner A. Hofer, Hong-Jun Gao, Buckled Silicene Formation on Ir(111), Nano Letts. 2013 13 (2), 685-690.

DOI: 10.1021/nl304347w

Google Scholar

[9] Mhairi H. Gass, Ursel Bangert, Andrew L. Bleloch, Peng Wang, Rahul R. Nair, A. K. Geim, Free-standing graphene at atomic resolution, Nat. Nano. 3 (2008) 676-681.

DOI: 10.1038/nnano.2008.280

Google Scholar

[10] C. Delerue, M. Lannoo, G. Allan, Calculations of the electron-energy-loss spectra of silicon nanostructures and porous silicon, Phys. Rev. B 56 (1997) 15306.

DOI: 10.1103/physrevb.56.15306

Google Scholar

[11] G.G. Guzmán-Verri, L.C. Lew Yan Voon, Electronic structure of silicon-based nanostructures, Phys. Rev. B 76 (2007) 075131.

DOI: 10.1103/physrevb.76.075131

Google Scholar

[12] J.C. Slater, G. F. Koster, Simplified LCAO Method for the Periodic Potential Problem, Phys. Rev. 94 (1954) 1498.

DOI: 10.1103/physrev.94.1498

Google Scholar

[13] T.B. Boykin, G. Klimeck, R.C. Bowen, F. Oyafuso, Diagonal parameter shifts due to nearest neighbor displacements in empirical tight-binding theory, Phys. Rev. B 66 (2002) 125207.

DOI: 10.1103/physrevb.66.125207

Google Scholar

[14] L. Hedin, S. Lundqvist, Effects of Electron-Electron and Electron-Phonon Interactions on the One-Electron States of Solids, Solid St. Phys. 23 (1970) 1-181.

DOI: 10.1016/s0081-1947(08)60615-3

Google Scholar

[15] M. Lannoo, Self-consistent procedure for point defects in tight-binding systems: Application to semiconductors, Phys. Rev. B 10 (1974) 2544–2553.

DOI: 10.1103/physrevb.10.2544

Google Scholar

[16] H.J. Monkhorst, J.D. Pack, Special points for Brillouin-zone integrations, Phys. Rev. B 13 (1976) 5188.

DOI: 10.1103/physrevb.13.5188

Google Scholar

[17] B. Mohan, A. Kumar, P. K. Ahluwalia, A first principle study of interband transitions and electron energy loss in mono and bilayer graphene: Effect of external electric field, Phys. E: Low-dimens. Syst. and Nanostruct. 44 (2012) 1670-1674.

DOI: 10.1016/j.physe.2012.04.017

Google Scholar

[18] O. V. Sedelnikova, L. G. Bulusheva, A. V. Okotrub, Ab initio study of dielectric response of rippled graphene, J. Chem. Phys. 134 (2011) 244707.

DOI: 10.1063/1.3604818

Google Scholar

[19] T. Eberlein, U. Bangert, R. R. Nair, R. Jones, M. Gass, A. L. Bleloch, K. S. Novoselov, A. Geim, P. R. Briddon, Plasmon spectroscopy of free-standing graphene films, Phys. Rev. B 77 (2008) 233406.

DOI: 10.1103/physrevb.77.233406

Google Scholar

[20] K. Chinnathambi, A. Chakrabarti, A. Banerjee, S.K. Deb, Optical Properties of Graphene-like Two Dimensional Silicene, arXiv:1205.5099 [cond-mat.mes-hall] (2012).

Google Scholar

[21] Andreas Scholz, Tobias Stauber, John Schliemann, Plasmons and screening in a monolayer of MoS2, arXiv:1306.1666 [cond-mat.mes-hall] (2013).

Google Scholar

[22] Ganhua Lu, Kehan Yu, Zhenhai Wen, Junhong Chen, Semiconducting graphene: converting graphene from semimetal to semiconductor, Nanoscale 5 (2013) 1353-1368.

DOI: 10.1039/c2nr32453a

Google Scholar

[23] B. Mohan, A. Kumar, P. K. Ahluwalia, A first principle calculation of electronic and dielectric properties of electrically gated low-buckled mono and bilayer silicene, Phys. E: Low-dimens. Syst. and Nanostruct. 53 (2013) 233–239.

DOI: 10.1016/j.physe.2013.05.014

Google Scholar

[24] B. Mohan, A. Kumar, P. K. Ahluwalia, Electronic structure and electron energy loss spectra of armchair and zigzag edged buckled silicene nano-ribbons, AIP Conf. Proc. 1512 (2013) 378-379.

DOI: 10.1063/1.4791069

Google Scholar