Influence of New SiO2 Nanofluids on Surface Wettability and Interfacial Tension Behaviour between Oil-Water Interface in EOR Processes

Article Preview

Abstract:

Fine SiO2 nanosphericals (2-5nm) and new various stable nanofluids including Tween 80, Span 80, Lauric alcohol-3EO, CTAB, SDS and K-Laurate surfactants in water or paraffin based solution were used as new SiO2 nanoproducts in oil recovery. These nanofluids can strongly change oil-wet carbonate reservoir rock to complete water-wet wettability and showed an excellent trend of surface tension (S.T) and IFT (interfacial tension) reduction in comparison with pure water and reference solutions. The CaCO3 plates reservoir was then aged for 2, 5 and 8 days into the 1, 3 and 8% of different concentrations of synthesized SiO2 nanofluids (effect of various concentrations via different aging time). Air/water and n-decane/water contact angles on oil-wet and clean carbonate rock aged in designed SiO2 nanofluids were measured and the pH value as a significant factor estimated. The interesting influence of microwave irradiation on surface tension and IFT including various SiO2 nanofluids was investigated after 12 min which some of the especial nanofluid concentrations showed successful reduction. Our findings indicated the important effect of temperature over decreasing of surface tension and IFT between oil and water interface including SiO2 nanofluids after annealing at 70°C. Therefore, this phenomenon can be significantly capable and valuable in applying of new technology in the fabrication of novel nanofluids in EOR processes and saving source of energy regarding to conventional production.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

1-8

Citation:

Online since:

December 2013

Export:

Price:

[1] A. Roustaei, J. Moghadasi, H. Bagherzadeh, A. Shahrabadi, An experimental investigation of polysilicon nanoparticles' recovery efficiencies through changes in interfacial tension and wettability alteration, SPE 156976 (2012) 1-7.

DOI: 10.2118/156976-ms

Google Scholar

[2] F.D.S. Curbelo, V.C. Santanna, E.L.B. Neto, T.V.D. Jr, T.N.C. Dantas, A.A.D. Neto, A.I.C. Garnica, Adsorption of nonionic surfactant in sandstones, Colloid. Sur. A 293 (2007)1-4.

DOI: 10.1016/j.colsurfa.2006.06.038

Google Scholar

[3] Z. Bi, W. Liao and L. Qi, Wettability alteration by CTAB adsorption at surfaces of SiO2 film or silica gel powder and mimic oil recovery, Appl. Sur. Sci. 221 (2004) 25-31.

DOI: 10.1016/s0169-4332(03)00948-6

Google Scholar

[4] K. Kumar, E. Dao, K.K. Mohanty, AFM study of mineral wettability with reservoir oils, J. Colloid. Inter. Sci. 289 (2005) 206-217.

DOI: 10.1016/j.jcis.2005.03.030

Google Scholar

[5] P. Zhang, M.T. Tweheyo, T. Austad, Wettability alteration and improved oil recovery by spontaneous imbibition of seawater into chalk: Impact of the potential determining ions Ca+2, Mg+2, and SO4-4, Colloid. Sur. A 301 (2007) 199-208.

DOI: 10.1016/j.colsurfa.2006.12.058

Google Scholar

[6] T. Young, An essay on the cohesion of fluids, Philos. Trans. R. Soc. 95 (1805) 65-87.

Google Scholar

[7] J.S. Amin, E. Nikooee, Sh. Ayatollahi, A. Alamdari, Investigating wettability alteration due to asphaltene precipitation: Imprints in surface multifractal characteristics, Appl. Sur. Sci. 256 (2010) 6466-6472.

DOI: 10.1016/j.apsusc.2010.04.036

Google Scholar

[8] J. Milter, T. Austad, Chemical flooding of oil reservoir, Colloid. Sur. A 117 (1996) 109-115.

Google Scholar

[9] B. Adibhatla, K.K. Mohanty, Parametric analysis of surfactant-aided imbibition in fractured carbonates, J. Colloid. Inter. Sci. 317 (2008) 513-522.

DOI: 10.1016/j.jcis.2007.09.088

Google Scholar

[10] L.E. Treiber, D.L. Archer, W.W. Owens, A laboratory evaluation of the wettability of fifty oil producing reservoirs, Soc. Pet. Eng. J. 12 (1971) 531-540.

DOI: 10.2118/3526-pa

Google Scholar

[11] A.R.Z. Var, D. Bastani, A. Badakhshan, Experimental study of the chemical stimulation of Iranian fractured carbonate reservoir rocks as an EOR potential, the impact on spontaneous imbibition and capillary pressure, Trans. C: Chemis. Chemi. Engin. 17 (2010) 37-45.

Google Scholar

[12] K.A. Rezaei Gomari, R. Denoyel, A.A. Hamouda, Wettability of calcite and mica modified by different long-chain fatty acids, J. Colloid. Inter. Sci. 297 (2006) 470-479.

DOI: 10.1016/j.jcis.2005.11.036

Google Scholar

[13] C. Drummond, J. Israelachvili, Surface forces and wettability, J. Pet. Sci. Eng. 33 (2002)123-133.

Google Scholar

[14] P. Somasundaran, L. Zhang, Adsorption of surfactants on minerals for wettability control in improved oil recovery processes, J. Pet. Sci. Eng. 52 (2006) 198-212.

DOI: 10.1016/j.petrol.2006.03.022

Google Scholar

[15] P.L. Alveskog, T. Holt, O. Torsaeter, The effect of surfactant concentration on the Amott wettability index and residual oil saturation, J. Pet. Sci. Eng. 20 (1998) 247-252.

DOI: 10.1016/s0920-4105(98)00027-8

Google Scholar

[16] S. Hoeiland, T. Barth, A.M. Blokhus, A. Skauge, The effect of crude oil acid fractions on wettability as studied by interfacial tension and contact angles, J. Pet. Sci. Eng. 30 (2001) 91-103.

DOI: 10.1016/s0920-4105(01)00106-1

Google Scholar

[17] O. Karoussi, A.A. Hamouda, Macroscopic and nanoscale study of wettability alteration of oil-wet calcite surface in presence of magnesium and sulfate ions, J. Colloid. Inter. Sci. 317 (2008) 26-34.

DOI: 10.1016/j.jcis.2007.09.045

Google Scholar

[18] C.M. Eggleston, in: K.L. Nagy, A.E. Blum (Eds.), Scanning probe microscopy of clay minerals, in: CMC workshop lectures, 7 Aurora, CO, (1994) 3-90.

Google Scholar

[19] G.A. Mansoori, Principles of Nanotechnology: Molecular-Based Study of Condensed Matter in Small Systems (World Scientific, London, 2005, Ch. 1).

Google Scholar

[20] C.O. Metin, J.R.B. Jr. Q.P. Nguyen, Adsorption of surface functionalized silica nanoparticles onto mineral surfaces and decane/water interface, J. Nano. Res. 14 (2012)1246-1262.

DOI: 10.1007/s11051-012-1246-1

Google Scholar

[21] N.A. Ogolo, O.A. Olafuyi, M.O. Onyekonwu, Enhanced oil recovery using nanoparticles, SPE 160847 (2012) 8-11.

DOI: 10.2118/160847-ms

Google Scholar

[22] C.R. Miranda, L.S.de Lara, B.C. Tonetto, Stability and mobility of functionalized silica nanoparticles for enhanced oil recovery applications, SPE 157033 (2012) 12-14.

DOI: 10.2118/157033-ms

Google Scholar

[23] F. Ravera, E. Santini, G. Loglio, M. Ferrari L. Liggieri, Effect of Nanoparticles on the Interfacial Properties of Liquid-Liquid and Liquid-Air Surface Layers, J. Phys. Chem. B 110 (2006) 19543- 19551.

DOI: 10.1021/jp0636468

Google Scholar

[24] H. Ma, M. Luo, L.L. Dai, Influences of surfactant and nanoparticle assembly on effective interfacial tensions, Phys. Chem. Chem. Phys. 10 (2008) 2207-2213.

DOI: 10.1039/b718427c

Google Scholar

[25] B.A. Suleimanov, F.S. Ismailov, E.F. Veliyev, Nanofluid for enhanced oil recovery, J. Pet. Sci. Eng. 78 (2011) 431-437.

DOI: 10.1016/j.petrol.2011.06.014

Google Scholar

[26] A. Karimi, Z. Fakhroueian, A. Bahramian, N.P. Khiabani, J.B. Darabad, R. Azin, S. Arya, Wettability alteration in carbonates using zirconium oxide nanofluids: EOR implications, Energy and Fuels, 26 (2012) 1028-1036.

DOI: 10.1021/ef201475u

Google Scholar

[27] P. Esmaeilzadeh, A. Bahramian, Z. Fakhroueian, Adsorption of anionic, cationic and nonionic surfactants on carbonate rock in presence of ZrO2 nanoparticles, Phys. Procedia 22 (2011) 63-67.

DOI: 10.1016/j.phpro.2011.11.009

Google Scholar

[28] P. Esmaeilzadeh, Z. Fakhroueian, A. Bahramian, S. Arya, Influence of ZrO2 nanoparticles including SDS and CTAB surfactants assembly on the interfacial properties of liquid-liquid, liquid-air and liquid-solid surface layers, J. Nano Res. 21 (2013) 15-21.

DOI: 10.4028/www.scientific.net/jnanor.21.15

Google Scholar

[29] N.Y.T. Le, D.K. Pham, K.H. Le, P.T. Nguyen, Design and screening of synergistic blends of SiO2 nanoparticles and surfactants for enhanced oil recovery in high-temperature reservoirs, Adv. Nat. Sci.: Nanosci. Nanotechnol. 2 (2011) 035013-035019.

DOI: 10.1088/2043-6262/2/3/035013

Google Scholar

[30] E. Santini, J. Kragel, F. Ravera, L. Liggieri, R. Miller, Study of the monolayer structure and wettability properties of silica nanoparticles and CTAB using the Langmuir trough technique, Colloid Sur. A 382 (2011) 186-191.

DOI: 10.1016/j.colsurfa.2010.11.042

Google Scholar

[31] T. Zhang, SPE, A. Davidson, S.L. Bryant, SPE, C. Huh, SPE, Nanoparticle-Stabilized Emulsions for Applications in Enhanced Oil Recovery, SPE 129885 (2010) 24-28.

DOI: 10.2118/129885-ms

Google Scholar