Resorbable Polymer Membranes for Medical Applications

Article Preview

Abstract:

A bioresorbable polymer poly-ε-caprolactone (PCL) was tested in order to obtain porous materials suitable for membranes. The commercial PCL with various molecular weights (2kDa, 60kDa, 80 kDa) but similar polydispersity has been chosen. The membranes were produced by the casting method and the membrane materials underwent microstructure investigation (SEM) to assess the size of pores and an average porosity of the membranes. The membranes permeability was established by means of ultrafiltration. Also wettabilility and basic mechanical properties (such as: tensile strength Rm, Youngs modulus, E) were established. The membranes durability was tested in in vitro conditions (PBS/37°C) by monitoring of changes by means of ion conductivity measurement and changes in the molecular weight (the Ubbelohde method). The porous materials were tested towards biocompatibility, i.e. the membrane was contacted with the osteoblast line of NHOst cells (viability test, cells morphology). Non-perforated PCL foil was used as a reference material. The best physicochemical, mechanical and biological properties of the membranes were observed in case of application of PCL with molecular weight of 60 kDa.

You might also be interested in these eBooks

Info:

Pages:

99-108

Citation:

Online since:

March 2014

Export:

Price:

[1] H. Kawakami. Polymeric membrane materials for artificial organs. Journal of Artificial Organs 11 (2008) 4 177-181.

DOI: 10.1007/s10047-008-0427-2

Google Scholar

[2] D. F. Stamatialis, B. J. Papenburg, M. Girones, S. Saiful, S. Bettahalli, S. Schmitmeier, M. Wessling . Medical applications of membranes: Drug delivery, artificial organs and tissue engineering. Journal of Membrane Science 308 (2008) 1–34.

DOI: 10.1016/j.memsci.2007.09.059

Google Scholar

[3] M. Vallet-Regi, I. Izquierdo-Barba, M. Colilla. Structure and functionalization of mesoporous bioceramics for bone tissue regeneration and local drug delivery. Philosophical Transactions of the Royal Society 370 (2012) 1400-1421.

DOI: 10.1098/rsta.2011.0258

Google Scholar

[4] E. Stodolak-Zych, A. Frączek-Szczypta, M. Błażewicz. Polyactide – carbon nanotubes nanocomposites as membranes for Guided Nerve Regeneration (GNR). Engineering of Biomaterials 15 (2012) 116–117.

Google Scholar

[5] E. Stodolak, T. Gumula, R. Leszczynski, J. Wieczorek, S. Blazewicz. A composite material used as a membrane for ophthalmology applications. Composites Science and Technology 70 (2010) 1915–(1919).

DOI: 10.1016/j.compscitech.2010.07.007

Google Scholar

[6] M.C. Bottino, V. Thomas, G. Schmidt, Y.K. Vohra, T.M. Chu, M.J. Kowolik. Recent advances in the development of GTR/GBR membranes for periodontal regeneration—a materials perspective. Dental Materials 28 (2012) 7 703–21.

DOI: 10.1016/j.dental.2012.04.022

Google Scholar

[7] F-M. Chen, J. Zhang, M. Zhang, Y. An, F. Chen, Z-F. Wu. A review on endogenous regenerative technology in periodontal regenerative medicine. Biomaterials 31 (2010) 7892-7927.

DOI: 10.1016/j.biomaterials.2010.07.019

Google Scholar

[8] H. F. Christoph, R. Hammerle, E. Jung. Bone augmentation by means of barrier membranes Periodontology 33 (2003) 36–53.

Google Scholar

[9] Y. Zhang, X. Zhang, B. Shi, R.J. Miron. Membranes for guided tissue and bone regeneration. Annals of Oral & Maxillofacial Surgery 1 (2013) 1-10.

DOI: 10.13172/2052-7837-1-1-451

Google Scholar

[10] J. Gottlow, Guided tissue regeneration using bioresorbable and non-resorbable devices: Initial healing and longterm results. Journal of Periodontology 64 (1993) 1157–1165.

DOI: 10.1902/jop.1993.64.11s.1157

Google Scholar

[11] R. Meinig. Clinical Use of Resorbable Polimeric Membranes in the Treatment of Bone Defects. Orthopedic Clinics of North America 41 (2010) 39-47.

DOI: 10.1016/j.ocl.2009.07.012

Google Scholar

[12] M. Woodruff , D. Hutmacher. The return of a forgotten polymer - Polycaprolactone in the 21st century. Progress in Polymer Science 35 (2010) 1217-1256.

DOI: 10.1016/j.progpolymsci.2010.04.002

Google Scholar

[13] B. Szaraniec. Durability of biodegradable internal fixation plates. Materials Science Forum 730-732 (2013) 15–19.

DOI: 10.4028/www.scientific.net/msf.730-732.15

Google Scholar

[14] W.Y. Ip. Polylactide membranes and sponges in the treatment of segmental defects in rabbit radii. Injury 33 (2002) 66-70.

DOI: 10.1016/s0020-1383(02)00134-1

Google Scholar

[15] Z. Gugala, S. Gogolewski. Healing of critical-size segmental bone defects in the sheep tibiae using bioresorbable polylactide membranes. Injury 33 (2002) 71-76.

DOI: 10.1016/s0020-1383(02)00135-3

Google Scholar

[16] A. Gerber, S. Gogolewski. Reconstruction of large segmental defects in the sheep tibia using polylactide membranes. A clinical and radiographic report. Injury 33 (2002) 43-57.

DOI: 10.1016/s0020-1383(02)00132-8

Google Scholar

[17] PN-EN ISO 10993-13: 2010 Biological evaluation of medical devices - Part 13: Identification and quantification of degradation products from polymeric medical devices.

DOI: 10.2345/9781570203961.ch1

Google Scholar

[18] K. C. Khulbe, C. Y. Feng, T. Matsuura. Synthetic Polymeric Membranes. Pore Size, Pore Size Distribution, and Roughness at the Membrane Surface. Springer Laboratory (2008) 101-139.

DOI: 10.1007/978-3-540-73994-4_5

Google Scholar

[19] Je Young Kim, Hwan Kwang Lee, Sung Chul Kim. Surface structure and phase separation mechanism of polysulfone membranes by atomic force microscopy, Journal of Membrane Science, 1 (1999) 159–166.

DOI: 10.1016/s0376-7388(99)00164-7

Google Scholar

[20] N. Krasteva, B. Seifert, W. Albrecht, T. Weigel, M. Schossig, G. Altankov, T. Groth. Influence of polymer membrane porosity on C3A hepatoblastoma cell adhesive interaction and function. Biomaterials 25 (2004) 2467–2476.

DOI: 10.1016/j.biomaterials.2003.09.031

Google Scholar

[21] D. Yamashita, M. Machigashira, M. Miyamoto, H. Takeuchi, K. Noguchi,Y. Izumi, S. Ban. Effect of surface roughness on initial responses of osteoblast-like cells on two types of zirconia. Dental Materials Journal 28 (2009) 461–470.

DOI: 10.4012/dmj.28.461

Google Scholar

[22] K. Anselme, B. Noel, P. Hardouin. Human osteoblast adhesion on titanium alloy, stainless steel, glass and plastic substrates with same surface topography. Journal of Materials Science: Materials in Medicine 10 (1999) 815-819.

Google Scholar

[23] M. Lampin, R. Warocquier-Clerout, C. Legris, M. Degrange, M. F. Sigot-Luizard. Correlation between substratum roughness and wettability, cell adhesion, and cell migration. Journal Biomedical Materials Research 36 (1997) 99–108.

DOI: 10.1002/(sici)1097-4636(199707)36:1<99::aid-jbm12>3.0.co;2-e

Google Scholar