The Identification of HSA-MIR-17-5P Existence in the Exosome of Adipose-Derived Stem Cells and Adipocytes

Article Preview

Abstract:

MicroRNAs (miRNAs) have ability to down-regulate gene expressions. hsa-miR-17-5p, has been confirmed as an oncogene or tumor suppressor. However, the existence on human adipose-derived stem cells (ADSCs) or adipocytes, is still unclear. Many researchers emphasizing the role of hsa-miR-17-5p on cellular senescence, aging and cancer, but not specific on the expression in the exosome of human ADSCs and adipocytes. The primary ADSCs were derived from subcutaneous adipose tissue of pregnant woman during elective cesarean operation, then processed by combining conventional and enzymatic methods. Adipocytes were differentiated by using the StemPro Adipogenesis Differentiation kit® and Oil Red-O staining. Exosomes were isolated using Exosome Purification and RNA Isolation kit® and were characterized by scanning electron microscope. The markers, CD34 and CD44, were identified and analyzed by using FACS analysis. Subsequently, microRNA was extracted and observed for hsa-miR-17-5p expression. This study showed that ADSCs and adipocytes were proved to express CD34+ and CD44+. The hsa-miR-17-5p were also detected in both the exosome of ADSCs and adipocytes. Although the source of the ADSCs was from pregnant woman, the characteristic was similar with the ones from non-pregnant woman. Our study also supports the questionable existence of CD34 in ADSCs. Having confirmed the characteristics, we proved that the exosomes of ADSCs and adipocytes expressed similar hsa-miR-17-5p despite they are from phenotypically different cell types and may have distinct roles. However, further research steps should be done in the future to verify the role of hsa-miR-17-5p towards senescent cell and ADSC differentiation.

You might also be interested in these eBooks

Info:

Pages:

66-75

Citation:

Online since:

August 2021

Export:

Price:

* - Corresponding Author

[1] L. Frese, P.E. Dijkman, S.P. Hoerstrup, Adipose tissue-derived stem cells in regenerative medicine, Transfus. Med. Hemotherapy. 43 (2016) 268–274.

DOI: 10.1159/000448180

Google Scholar

[2] D.-T. Chu, T. Nguyen Thi Phuong, N.L.B. Tien, D.K. Tran, L.B. Minh, V. Van Thanh, P. Gia Anh, V.H. Pham, V. Thi Nga, Adipose tissue stem cells for therapy: An update on the progress of isolation, culture, storage, and clinical application, J. Clin. Med. 8 (2019) 917.

DOI: 10.3390/jcm8070917

Google Scholar

[3] P. Li, X. Guo, A review: therapeutic potential of adipose-derived stem cells in cutaneous wound healing and regeneration, Stem Cell Res. Ther. 9 (2018) 1–7.

DOI: 10.1186/s13287-018-1044-5

Google Scholar

[4] L. Mazini, L. Rochette, M. Amine, G. Malka, Regenerative capacity of adipose derived stem cells (ADSCs), comparison with mesenchymal stem cells (MSCs), Int. J. Mol. Sci. 20 (2019) 2523.

DOI: 10.3390/ijms20102523

Google Scholar

[5] R.A. Sabol, A.C. Bowles, A. Côté, R. Wise, N. Pashos, B.A. Bunnell, Therapeutic potential of adipose stem cells, (2018).

DOI: 10.1007/5584_2018_248

Google Scholar

[6] P. Palumbo, F. Lombardi, G. Siragusa, M.G. Cifone, B. Cinque, M. Giuliani, Methods of isolation, characterization and expansion of human adipose-derived stem cells (ASCs): an overview, Int. J. Mol. Sci. 19 (2018) 1897.

DOI: 10.3390/ijms19071897

Google Scholar

[7] C. Sengenes, K. Lolmede, A. Zakaroff‐Girard, R. Busse, A. Bouloumié, Preadipocytes in the human subcutaneous adipose tissue display distinct features from the adult mesenchymal and hematopoietic stem cells, J. Cell. Physiol. 205 (2005) 114–122.

DOI: 10.1002/jcp.20381

Google Scholar

[8] A. V Vlassov, S. Magdaleno, R. Setterquist, R. Conrad, Exosomes: current knowledge of their composition, biological functions, and diagnostic and therapeutic potentials, Biochim. Biophys. Acta (BBA)-General Subj. 1820 (2012) 940–948.

DOI: 10.1016/j.bbagen.2012.03.017

Google Scholar

[9] J. Zhang, J. Guan, X. Niu, G. Hu, S. Guo, Q. Li, Z. Xie, C. Zhang, Y. Wang, Exosomes released from human induced pluripotent stem cells-derived MSCs facilitate cutaneous wound healing by promoting collagen synthesis and angiogenesis, J. Transl. Med. 13 (2015) 1–14.

DOI: 10.1186/s12967-015-0417-0

Google Scholar

[10] G. Falcone, A. Felsani, I. D'Agnano, Signaling by exosomal microRNAs in cancer, J. Exp. Clin. Cancer Res. 34 (2015) 1–10.

DOI: 10.1186/s13046-015-0148-3

Google Scholar

[11] B.N. Hannafon, W.-Q. Ding, Intercellular communication by exosome-derived microRNAs in cancer, Int. J. Mol. Sci. 14 (2013) 14240–14269.

DOI: 10.3390/ijms140714240

Google Scholar

[12] Y. Liu, H. Wang, J. Wang, Exosomes as a novel pathway for regulating development and diseases of the skin, Biomed. Reports. 8 (2018) 207–214.

Google Scholar

[13] Y. Lee, M. Kim, J. Han, K. Yeom, S. Lee, S.H. Baek, V.N. Kim, MicroRNA genes are transcribed by RNA polymerase II, EMBO J. 23 (2004) 4051–4060.

DOI: 10.1038/sj.emboj.7600385

Google Scholar

[14] N. Cai, L. Hu, Y. Xie, J.H. Gao, W. Zhai, L. Wang, Q.J. Jin, C.Y. Qin, R. Qiang, MiR-17-5p promotes cervical cancer cell proliferation and metastasis by targeting transforming growth factor-beta receptor 2, Eur Rev Med Pharmacol Sci. 22 (2018) 1899–(1906).

Google Scholar

[15] M.M.J. Mens, M. Ghanbari, Cell cycle regulation of stem cells by microRNAs, Stem Cell Rev. Reports. 14 (2018) 309–322.

DOI: 10.1007/s12015-018-9808-y

Google Scholar

[16] Q. Wang, Y.C. Li, J. Wang, J. Kong, Y. Qi, R.J. Quigg, X. Li, miR-17-92 cluster accelerates adipocyte differentiation by negatively regulating tumor-suppressor Rb2/p.130, Proc. Natl. Acad. Sci. 105 (2008) 2889–2894.

DOI: 10.1073/pnas.0800178105

Google Scholar

[17] H. Li, T. Li, S. Wang, J. Wei, J. Fan, J. Li, Q. Han, L. Liao, C. Shao, R.C. Zhao, miR-17-5p and miR-106a are involved in the balance between osteogenic and adipogenic differentiation of adipose-derived mesenchymal stem cells, Stem Cell Res. 10 (2013) 313–324.

DOI: 10.1016/j.scr.2012.11.007

Google Scholar

[18] H. Dellago, M.R. Bobbili, J. Grillari, MicroRNA-17-5p: at the crossroads of cancer and aging-a mini-review, Gerontology. 63 (2017) 20–28.

DOI: 10.1159/000447773

Google Scholar

[19] G. Liu, P. Hao, J. Xu, L. Wang, Y. Wang, R. Han, M. Ying, S. Sui, J. Liu, X. Li, Upregulation of microRNA-17-5p contributes to hypoxia-induced proliferation in human pulmonary artery smooth muscle cells through modulation of p.21 and PTEN, Respir. Res. 19 (2018) 1–10.

DOI: 10.1186/s12931-018-0902-0

Google Scholar

[20] J.N. Li, Y. Zhang, Y.F. Wang, J.Y. Chen, Effect of pregnancy on the proliferation of rat adipose-derived stem cells, Genet. Mol. Res. GMR. 16 (2017).

DOI: 10.4238/gmr16019059

Google Scholar

[21] Y. Li, W. Zhang, J. Gao, J. Liu, H. Wang, J. Li, X. Yang, T. He, H. Guan, Z. Zheng, Adipose tissue-derived stem cells suppress hypertrophic scar fibrosis via the p.38/MAPK signaling pathway, Stem Cell Res. Ther. 7 (2016) 1–16.

DOI: 10.1186/s13287-016-0356-6

Google Scholar

[22] L.E. Sidney, M.J. Branch, S.E. Dunphy, H.S. Dua, A. Hopkinson, Concise review: evidence for CD34 as a common marker for diverse progenitors, Stem Cells. 32 (2014) 1380–1389.

DOI: 10.1002/stem.1661

Google Scholar

[23] M.F. Taha, V. Hedayati, Isolation, identification and multipotential differentiation of mouse adipose tissue-derived stem cells, Tissue Cell. 42 (2010) 211–216.

DOI: 10.1016/j.tice.2010.04.003

Google Scholar

[24] P.C. Baer, Adipose-derived mesenchymal stromal/stem cells: an update on their phenotype in vivo and in vitro, World J. Stem Cells. 6 (2014) 256.

DOI: 10.4252/wjsc.v6.i3.256

Google Scholar

[25] H. Suga, D. Matsumoto, H. Eto, K. Inoue, N. Aoi, H. Kato, J. Araki, K. Yoshimura, Functional implications of CD34 expression in human adipose–derived stem/progenitor cells, Stem Cells Dev. 18 (2009) 1201–1210.

DOI: 10.1089/scd.2009.0003

Google Scholar

[26] C.-S. Lin, Z.-C. Xin, C.-H. Deng, H. Ning, G. Lin, T.F. Lue, Defining adipose tissue-derived stem cells in tissue and in culture, Histol. Histopathol. Vol. 25, No 6. (2010).

Google Scholar

[27] W. Tsuji, J.P. Rubin, K.G. Marra, Adipose-derived stem cells: Implications in tissue regeneration, World J. Stem Cells. 6 (2014) 312.

DOI: 10.4252/wjsc.v6.i3.312

Google Scholar

[28] E.T. Camilleri, M.P. Gustafson, A. Dudakovic, S.M. Riester, C.G. Garces, C.R. Paradise, H. Takai, M. Karperien, S. Cool, H.-J. Im Sampen, Identification and validation of multiple cell surface markers of clinical-grade adipose-derived mesenchymal stromal cells as novel release criteria for good manufacturing practice-compliant production, Stem Cell Res. Ther. 7 (2016) 1–16.

DOI: 10.1186/s13287-016-0370-8

Google Scholar

[29] A.A. Hamid, R.B.H. Idrus, A. Bin Saim, S. Sathappan, K.-H. Chua, Characterization of human adipose-derived stem cells and expression of chondrogenic genes during induction of cartilage differentiation, Clinics. 67 (2012) 99–106.

DOI: 10.6061/clinics/2012(02)03

Google Scholar

[30] H.R. Lin, C.-W. Heish, C.-H. Liu, S. Muduli, H.-F. Li, A. Higuchi, S.S. Kumar, A.A. Alarfaj, M.A. Munusamy, S.-T. Hsu, Purification and differentiation of human adipose-derived stem cells by membrane filtration and membrane migration methods, Sci. Rep. 7 (2017) 1–13.

DOI: 10.1038/srep40069

Google Scholar

[31] F. Festy, L. Hoareau, S. Bes-Houtmann, A.-M. Péquin, M.-P. Gonthier, A. Munstun, J.J. Hoarau, M. Césari, R. Roche, Surface protein expression between human adipose tissue-derived stromal cells and mature adipocytes, Histochem. Cell Biol. 124 (2005) 113–121.

DOI: 10.1007/s00418-005-0014-z

Google Scholar

[32] W.P. Cawthorn, E.L. Scheller, O.A. MacDougald, Adipose tissue stem cells meet preadipocyte commitment: going back to the future, J. Lipid Res. 53 (2012) 227–246.

DOI: 10.1194/jlr.r021089

Google Scholar

[33] H.S. Kang, G. Liao, L.M. DeGraff, K. Gerrish, C.D. Bortner, S. Garantziotis, A.M. Jetten, CD44 plays a critical role in regulating diet-induced adipose inflammation, hepatic steatosis, and insulin resistance, PLoS One. 8 (2013) e58417.

DOI: 10.1371/journal.pone.0058417

Google Scholar

[34] T. Matsumoto, K. Kano, D. Kondo, N. Fukuda, Y. Iribe, N. Tanaka, Y. Matsubara, T. Sakuma, A. Satomi, M. Otaki, Mature adipocyte‐derived dedifferentiated fat cells exhibit multilineage potential, J. Cell. Physiol. 215 (2008) 210–222.

DOI: 10.1002/jcp.21304

Google Scholar

[35] T. Yamashita, Y. Takahashi, Y. Takakura, Possibility of exosome-based therapeutics and challenges in production of exosomes eligible for therapeutic application, Biol. Pharm. Bull. 41 (2018) 835–842.

DOI: 10.1248/bpb.b18-00133

Google Scholar

[36] C. Han, X. Sun, L. Liu, H. Jiang, Y. Shen, X. Xu, J. Li, G. Zhang, J. Huang, Z. Lin, Exosomes and their therapeutic potentials of stem cells, Stem Cells Int. 2016 (2016).

DOI: 10.1155/2016/7653489

Google Scholar

[37] Z. Yao, W. Chen, S. Shao, S. Ma, C. Yang, M. Li, J. Zhao, L. Gao, Role of exosome-associated microRNA in diagnostic and therapeutic applications to metabolic disorders, J. Zhejiang Univ. B. 19 (2018) 183–198.

DOI: 10.1631/jzus.b1600490

Google Scholar

[38] B. Chen, J. Cai, Y. Wei, Z. Jiang, H.E. Desjardins, A.E. Adams, S. Li, H.-K. Kao, L. Guo, Exosomes are comparable to source adipose stem cells in fat graft retention with up-regulating early inflammation and angiogenesis, Plast. Reconstr. Surg. 144 (2019) 816e-827e.

DOI: 10.1097/prs.0000000000006175

Google Scholar

[39] M.Y. Shah, A. Ferrajoli, A.K. Sood, G. Lopez-Berestein, G.A. Calin, microRNA therapeutics in cancer—an emerging concept, EBioMedicine. 12 (2016) 34–42.

DOI: 10.1016/j.ebiom.2016.09.017

Google Scholar

[40] M.J. Bueno, M. Malumbres, MicroRNAs and the cell cycle, Biochim. Biophys. Acta (BBA)-Molecular Basis Dis. 1812 (2011) 592–601.

DOI: 10.1016/j.bbadis.2011.02.002

Google Scholar

[41] Z.G. Zhang, B. Buller, M. Chopp, Exosomes—beyond stem cells for restorative therapy in stroke and neurological injury, Nat. Rev. Neurol. 15 (2019) 193–203.

DOI: 10.1038/s41582-018-0126-4

Google Scholar

[42] S.C. Ferrante, E.P. Nadler, D.K. Pillai, M.J. Hubal, Z. Wang, J.M. Wang, H. Gordish-Dressman, E. Koeck, S. Sevilla, A.A. Wiles, Adipocyte-derived exosomal miRNAs: a novel mechanism for obesity-related disease, Pediatr. Res. 77 (2015) 447–454.

DOI: 10.1038/pr.2014.202

Google Scholar

[43] J. Zhang, S. Li, L. Li, M. Li, C. Guo, J. Yao, S. Mi, Exosome and exosomal microRNA: trafficking, sorting, and function, Genomics. Proteomics Bioinformatics. 13 (2015) 17–24.

DOI: 10.1016/j.gpb.2015.02.001

Google Scholar

[44] M.S. Nicoloso, R. Spizzo, M. Shimizu, S. Rossi, G.A. Calin, MicroRNAs—the micro steering wheel of tumour metastases, Nat. Rev. Cancer. 9 (2009) 293–302.

DOI: 10.1038/nrc2619

Google Scholar

[45] G.A. Calin, C.D. Dumitru, M. Shimizu, R. Bichi, S. Zupo, E. Noch, H. Aldler, S. Rattan, M. Keating, K. Rai, Frequent deletions and down-regulation of micro-RNA genes miR15 and miR16 at 13q14 in chronic lymphocytic leukemia, Proc. Natl. Acad. Sci. 99 (2002) 15524–15529.

DOI: 10.1073/pnas.242606799

Google Scholar

[46] N. Cloonan, M.K. Brown, A.L. Steptoe, S. Wani, W.L. Chan, A.R.R. Forrest, G. Kolle, B. Gabrielli, S.M. Grimmond, The miR-17-5p microRNA is a key regulator of the G1/S phase cell cycle transition, Genome Biol. 9 (2008) 1–14.

DOI: 10.1186/gb-2008-9-8-r127

Google Scholar