Test Method for Friction Characterization of Rivets

Article Preview

Abstract:

Due to continuously increasing requirements on lightweight sheet metal constructions, new processes and technologies are necessary to face current and future challenges. A trend in lightweight construction is the multi-material mix with sheets of different geometric and mechanical properties. To manufacture these so-called composite structures, new joining technologies and methods are required. One possibility is the further development of the self-pierce riveting joining process. For the simulation and evaluation of new and adapted processes of self-pierce riveting, numerical models are used to investigate process parameters and constraints. Besides precise material models for the numerical simulation of this joining process, the identification of friction parameters between the individual sheets and rivet elements is necessary to achieve exact results. Thus, a method is necessary to identify the friction coefficients between rivet elements and sheets. Such a method is presented and evaluated in this work. Different process parameters like the relative speed are varied for the experimental investigations and an analysis of the respective influence on the resulting friction coefficients is conducted. For the use of the test set-up, coefficients of friction are determined for rivet elements “RIVSET® C 5.3x5.5” (Böllhoff GmbH) coated with Almac® in combination with two different sheet materials HCT590X+Z and EN‑AW 6014.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

132-137

Citation:

Online since:

October 2020

Export:

Price:

* - Corresponding Author

[1] R. Hörhold, M. Müller, M. Merklein, G. Meschut, Mechanical properties of an innovative shear-clinching technology for ultra-high-strength-steel and aluminium in lightweight car body structures, Weld. World 60 (2016) 613-620.

DOI: 10.1007/s40194-016-0313-0

Google Scholar

[2] O. Hahn, G. Meschut, M. Bergau, M. Matzke, Self-pierce Riveting and Hybrid Joining of Boron Steels in Multi-material and Multi-sheet Joints, Proc. CIRP 18 (2014) 192-196.

DOI: 10.1016/j.procir.2014.06.130

Google Scholar

[3] D. Li, A. Chrysanthou, I. Patel, G. Williams, Self-Piercing Riveting - A review, Int. J. Adv. Manuf. Tech. 92 (2017) 1777-1824.

DOI: 10.1007/s00170-017-0156-x

Google Scholar

[4] L. Han, A. Chrysanthou, Evaluation of quality and behavior of self-piercing riveted aluminium to high strength low alloy sheets with different surface coatings, Mater. Design 29 (2008) 458-468.

DOI: 10.1016/j.matdes.2006.12.020

Google Scholar

[5] S. Han, X. Tang, Y. Gao, Q. Zeng, Effects of friction factors on flat bottom self-pierce riveting joints of AZ31 magnesium alloy, Materials Research Innovations 19 (2015) 235-238.

DOI: 10.1179/1432891715z.0000000002155

Google Scholar

[6] L. Han, A. Chrysanthou, K. Young, Mechanical behaviour of self-piercing riveted multi-layer joints under different specimen configurations, Materials & Design 28 (2007) 2024-2033.

DOI: 10.1016/j.matdes.2006.06.015

Google Scholar

[7] J. Moraes, J. Jordon, E. Ilieva, Influence of the Friction Coefficient in Self-Pierce Riveting Simulations: A Statistical Analysis, SAE Int. J. Mater. Manuf. 11 (2018).

DOI: 10.4271/05-11-02-0013

Google Scholar

[8] ASTM Standard G99-17, Standard Test Method for Wear Testing with a Pin-on-Disk Apparatus, ASTM International, West Conshohocken, PA, (2017).

Google Scholar

[9] C. Kossack, J. Ziegert, Energy-based friction analysis, Precis. Eng. 55 (2019) 88-94.

Google Scholar

[10] A. Birkert, S. Haage, M. Straub, Umformtechnische Herstellung komplexer Karosserieteile – Auslegung von Ziehanlagen, Berlin, Heidelberg, Springer-Verlag, (2013).

DOI: 10.1007/978-3-642-34670-5

Google Scholar

[11] M. Steinicke, Modifiziertes Reibgesetz für die Finite-Elemente-Simulation des Tiefziehens, in: K. Siegelt (Ed.), Beiträge zur Umformtechnik, Band 41, DGM Informationsgesellschaft (2003).

Google Scholar

[12] F. Zöller, Erarbeitung von Grundlagen zur Abbildung des tribologischen Systems in der Umformsimulation, in: M. Merklein, J. Franke, M. Schmidt (Eds.): Fertigungstechnik - Erlangen, Band 279, Meisenbach, Bamberg, (2016).

Google Scholar

[13] R. Stribeck, Die wesentlichen Eigenschaften der Gleit- und Rollenlager, Verein deutscher Ingenieure (Eds.), Mitteilungen über Forschungsarbeiten auf dem Gebiete des Ingenieurwesens, Band 7, Springer, Berlin (1903) 1-47.

DOI: 10.1007/978-3-662-01997-9

Google Scholar