Microstructure and Microhardness of Powder Boronized Vanadis 6 Steel

Article Preview

Abstract:

A Cr-V ledeburitic steel Vanadis 6 was powder boronized for different durations, austenitized, quenched and tempered. All the boronized layers are two-phased, i.e. they are formed by MeB and Me2B compounds. The thickness of boronized compound layers increased moderately with boronizing time. The thickness of MeB individual layer increases more rapidly, and it makes up to 50% of total layer thickness when boronized for 150 min. Boronized layers contain enhanced amount of chromium but they are almost free of other alloying elements. The MeB compound has a microhardness of around 1860 HV 0.1 after short – time boronizing but its microhardness exceeded 2100 HV 0.1 after long – time processing. The microhardness of Me2B was correspondingly lower, its values were around 1760 – 1850 HV 0.1. Transient region manifested enhanced amount of carbides, resulting from carbon transport from growing boronized layers towards the substrate. This phenomenon was reflected in elevated hardness compared to the substrate.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

73-84

Citation:

Online since:

August 2019

Export:

Price:

* - Corresponding Author

[1] E.J. Mittemeijer, M.A.J. Somers, Thermochemcial Surface Engineering of Steels, WoodHead Publishing, 2015, 827.

Google Scholar

[2] A. K. Sinha, Boriding (Boronizing)", Heat Treating, ASM Handbook, ASM Intl., 4 (1991) 437-447.

Google Scholar

[3] U. Sen, S. Sen, The fracture toughness of borides formed on boronized cold work tool steels, Mater. Charact., 50 (2003) 261 - 267.

DOI: 10.1016/s1044-5803(03)00104-9

Google Scholar

[4] P. Jurči, M. Hudáková, Diffusion Boronizing of H11 Hot Work Tool Steel, J. Mater. Eng. Perform., 20 (2011) 1180 – 1187.

DOI: 10.1007/s11665-010-9750-x

Google Scholar

[5] P. Jurči, M. Hudáková, M. Kusý, Nature of Phases in Boronized H11 Hot Work Tool Steel, Kovove Mater. 50 (2012) 177 – 184.

DOI: 10.4149/km_2012_3_177

Google Scholar

[6] M. Hudáková, M. Kusý, V. Sedlická, P. Grgač, Analysis of the boronized layer on K 190 PM tool steel, Mater. Tehnol., 41 (2007) 81 – 84.

Google Scholar

[7] M. Kulka, A. Pertek, Characterization of Complex (B + C + N) Diffusion Layers Formed on Chromium and Nickel-based Low-carbon Steel, Appl. Surf. Sci., 218 (2003) 161 – 171.

DOI: 10.1016/s0169-4332(03)00563-4

Google Scholar

[8] I. Campos, R. Torres, G. Ramirez, R. Ganem, J. Martinez, Growth Kinetics of Iron Boride Layers: Dimensional analysis, Appl. Surf. Sci. 252 (2006) 8662 - 8667.

DOI: 10.1016/j.apsusc.2005.12.002

Google Scholar

[9] V.I. Dybkov, W. Lengauer, K. Barmak, Formation of Boride Layers at the Fe–10% Cr alloy–boron Interface, J. Alloys Compd., 398 (2005) 113 - 122.

DOI: 10.1016/j.jallcom.2005.02.033

Google Scholar

[10] Ch. Li, B. Shen, G. Li, Ch. Yang, Effect of Boronizing Temperature and Time on Microstructure and Abrasion Wear Resistance of Cr12Mn2V2 High Chromium Cast Iron, Surf. Coat. Techn., 202 (2008) 5882 – 5886.

DOI: 10.1016/j.surfcoat.2008.06.170

Google Scholar

[11] C.K.N. Oliveira, L.C. Casteletti, A. Lombardi Neto, G.E. Totten, S.C. Heck, Production and Characterization of Boride Layers on AISI D2 Tool Steel, Vacuum, 84 (2010) 792 - 796.

DOI: 10.1016/j.vacuum.2009.10.038

Google Scholar

[12] I. Uslu, H. Omert, M. Ipek, F.G. Celebi, O. Ozdemir, O. and C. Bindal, A Comparison of Borides Formed on AISI 1040 and AISI P20 Steels, Mater. Des., 28 (2007) 1819 – 1826.

DOI: 10.1016/j.matdes.2006.04.019

Google Scholar

[13] T. L. Christiansen, F. Bottoli, K. Dahl, K. Vinter, N.B. Gammeltoft-Hansen, M.B. Laursen, M.A.J. Somers, Hard Surface Layers by Pack Boriding and Gaseous Thermo-Reactive Deposition and Diffusion Treatments, Materials Performance and Characterization, 6 (2017) 475 - 491.

DOI: 10.1520/mpc20160106

Google Scholar

[14] I. Ozbek, C. Bindal, Mechanical Properties of Boronized AISI W4 Steel, Surf. Coat. Techn., 154 (2002) 14 - 20.

DOI: 10.1016/s0257-8972(01)01409-8

Google Scholar

[15] S. Sen, I. Ozbek, U. Sen, C. Bindal, Mechanical Behavior of Borides Formed on Borided Cold Work Tool Steel, Surf. Coat. Techn.,135 (2001) 173 - 177.

DOI: 10.1016/s0257-8972(00)01064-1

Google Scholar

[16] C. Martini, G. Palombarini, G. Poli and D. Prandstraller, Sliding and Abrasive Wear Behaviour of Boride Coatings, Wear, 256 (2004) 608 – 613.

DOI: 10.1016/j.wear.2003.10.003

Google Scholar

[17] I. Campos, M. Farah, N. Lopez, G. Bermudez, G. Rodriguez and C. Villa Velazquez, Evaluation of the Tool Life and Fracture Toughness of Cutting Tools Boronized by the Paste Boriding Process, Appl. Surf. Sci., 254 (2008) 2967 – 2974.

DOI: 10.1016/j.apsusc.2007.10.038

Google Scholar

[18] M. Nemec, P. Jurči, P. Kosnáčová, M. Kučerová, Evaluation of structural isotropy of Cr-V ledeburitic steel made by powder metallurgy of rapidly solidified particles, Kovove Mater., 54 (2016) 453 – 462.

DOI: 10.4149/km_2016_6_453

Google Scholar

[19] P. Jurči, Cr-V Ledeburitic Cold-Work Tool Steels, Mater. Tehnol., 45 (2011) 383 – 394.

Google Scholar

[20] P. Jurči, M. Dománková, M. Hudáková, J. Ptačinová, M. Pašák, P. Palček, Characterization of microstructure and tempering response of conventionally quenched, short- and long-time sub-zero treated PM Vanadis 6 ledeburitic tool steel, Mater. Charact., 134 (2017) 398 – 415.

DOI: 10.1016/j.matchar.2017.10.029

Google Scholar

[21] P. Jurci, M. Domankova, J. Ptacinova, M. Pašák, M. Kusý, P. Priknerová, P. Investigation of the Microstructural Changes and Hardness Variations of Sub-Zero Treated Cr-V Ledeburitic Tool Steel Due to the Tempering Treatment, J. Mater. Eng. Perform., 27 (2018) 1514 - 1529.

DOI: 10.1007/s11665-018-3261-6

Google Scholar

[22] P. Bílek, J. Sobotová, P. Jurči, Evaluation of the Microstructural Changes in Cr-V Ledeburitic Tool Steel Depending on the Austenitization Temperature, Mater. Tehnol. 45 (2011) 489 – 493.

Google Scholar