Controlling the Molecular Interactions to Improve the Diffusion Barrier of Biosourced Polymers to Organic Solutes

Article Preview

Abstract:

The presented original work examines how sorption and diffusion can be combined at molecular scale in nanocomposite materials to improve the resistance to diffusion of biosourced or biodegradable polymers. The concept is applied to apolar penetrants and discussed on polycaprolactone (PCL) containing organomodified montmorillionites acting as nanoadsorbents.

You might also be interested in these eBooks

Info:

Periodical:

Defect and Diffusion Forum (Volumes 323-325)

Pages:

269-274

Citation:

Online since:

April 2012

Export:

Price:

[1] J. D. Floros and K. I. Mastos, in: Introduction to modified atmosphere packaging, edited by J. H. Han, Innovation in food packaging, chapter, 10, Elsevier Academic (2005).

Google Scholar

[2] A. J. Domb, J. Kost and D. M. Wiseman: Handbook of biodegradable polymers, Harwood Academic Publishers, Amsterdam, (1997).

Google Scholar

[3] R. M. Johnson, L. Y. Mwaikambo and N. Tucker: Biopolymers, chapter, 3, Rapra Technology (2003), p.14.

Google Scholar

[4] R. A. Auras, in: Solubility of gases and vapors in polylactide polymers, edited by T.M. Letcher, Thermodynamics, Solubility and Environmental Issues, chapter, 19, Elsevier (2007), p.343.

DOI: 10.1016/b978-044452707-3/50021-5

Google Scholar

[5] A. Alentiev and Y. Yampolskii, in: Prediction of gas permeation parameters of polymers, edited by Y. Yampolskii, I. Pinnau and B. D. Freeman, Materials Science of Membranes for Gas and Vapor Separation, John Wiley & Sons (2006), p.211.

DOI: 10.1002/047002903x.ch7

Google Scholar

[6] L. H. Sperling: Concentrated solutions, phase separation behavior and diffusion, Introduction to Physical Polymer Science, chapter, 4, John Willey & Sons (2006), p.146.

Google Scholar

[7] J. Bicerano: Transport of small penetrant molecules, Prediction of Polymer Properties, 3rd Ed, chapter, 15, Marcel Dekker (2002).

Google Scholar

[8] S. A. Ster, and J. R. Fried: Permeability of polymers to gases and vapors, Physical properties of polymers handbook, 2nd Edition, Springer Science (2007), p.1033.

DOI: 10.1007/978-0-387-69002-5_61

Google Scholar

[9] E. Jacquelot, E. Espuche, J. -F. Gerard, J. Duchet, P. Mazabraud: Journal of Polymer Science: Part B: Polymer Physics, 44(2006), p.431.

DOI: 10.1002/polb.20707

Google Scholar

[10] Z.F. Wang, B. Wang, N. Qi, H.F. Zhang, L.Q. Zhang: Polymer, 46 (2005), p.719.

Google Scholar

[11] G. Gorrasi, M. Tortora, V. Vittoria, D. Kaempfer, R. Mulhaupt: Polymer, 44 (2003), p.3679.

Google Scholar

[12] O. Vitrac and M. Hayert: Chemical Engineering Science, 62 (2007), p.2503.

Google Scholar

[13] L. Shen and Z. Chen: Chemical Engineering Science, 62 (2007), p.3748.

Google Scholar

[14] R. Klages: Microscopic chaos, fractals and transport in nonequilibrium statistical mechanics, World Scientific (2007), p.441.

Google Scholar

[15] H. Wang, J. Keum, A. Hiltner, E. Baer: Macromolecules, 42 (2009), p.7055.

Google Scholar

[16] S. Marras, K. Kladi, I. Tsivintzelis, I. Zuburtikudis, C. Panayiotou: Acta Biomater, 4 (2008), p.756.

Google Scholar

[17] G. Gillet, O. Vitrac and S. Desobry: Industrial Engineering Chemistry Research 48 (2009), p.5285.

Google Scholar

[18] G. Gillet, O. Vitrac and S. Desobry: Industrial Engineering Chemistry Research 10 (2010), p.1021.

Google Scholar

[19] O. Vitrac and G. Gillet: International Journal of Chemical Reactor Engineering, 8 (2010).

Google Scholar

[20] R. Roe, H. Bair, C. Gieniewski: Journal of Applied Polymer Science, 18 (1974), p.843.

Google Scholar