Solar Thermochemical Production of Fuels

Article Preview

Abstract:

High-temperature thermochemical processes efficiently convert concentrated solar energy into storable and transportable fuels. In the long run, H2O/CO2-splitting thermochemical cycles based on metal oxide redox reactions are developed to produce H2 and CO, which can be further processed to synthetic liquid fuels. In a transition period, carbonaceous feedstocks (fossil fuels, biomass, C-containing wastes) are solar-upgraded and transformed into valuable fuels via reforming, gasification and decomposition processes. The most promising solar thermochemical processes are discussed and the latest technological developments are summarized.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

303-312

Citation:

Online since:

October 2010

Export:

Price:

[1] A. Steinfeld, A. Meier: Solar Fuels and Materials. In: Encyclopedia of Energy, Elsevier, Vol. 5 (2004), p.623.

Google Scholar

[2] A. Steinfeld: Solar Energy 78 (2005), p.603.

Google Scholar

[3] S. Abanades, P. Charvin, G. Flamant, P. Neveu: Energy 31 (2006), p.2469.

Google Scholar

[4] S.H. Jensen, P.J. Larsen, M. Mogensen: Int. J. Hydrogen Energy 32 (2007), p.3253.

Google Scholar

[5] A. Le Duigou, J.M. Borgard, B. Larousse, D. Doizi, R. Allen, B. Ewan, et al.: Int. J. Hydrogen Energy 32 (2007), p.1516.

DOI: 10.1016/j.ijhydene.2006.10.047

Google Scholar

[6] G.J. Kolb, R.B. Diver, N. Siegel: J. Solar Energy Eng. 129 (2007), p.179.

Google Scholar

[7] A. Steinfeld: Int. J. Hydrogen Energy 27 (2002), p.611.

Google Scholar

[8] L.O. Schunk, P. Haeberling, S. Wepf, D. Wuillemin, A. Meier, A. Steinfeld: J. Solar Energy Eng. 130 (2008), 021009-1.

DOI: 10.1115/1.2840576

Google Scholar

[9] L.O. Schunk, W. Lipiński, A. Steinfeld: Chem. Eng. J. 150 (2009), p.502.

Google Scholar

[10] F.O. Ernst, A. Tricoli, S.E. Pratsinis, A. Steinfeld: AIChE J. 52 (2006), p.3297.

Google Scholar

[11] T. Melchior, N. Piatkowski, A. Steinfeld: Chem. Eng. Sci. 64 (2009), p.1095.

Google Scholar

[12] T. Abu Hamed, J.H. Davidson, M. Stolzenburg: J. Solar Energy Eng. 130 (2008), 041010-1.

Google Scholar

[13] H. Funke, H. Diaz, X. Liang, C. Carney, A.W. Weimer, P. Li, Int. J. Hydrogen Energy 33 (2008), p.1127.

Google Scholar

[14] S. Abanades, P. Charvin, F. Lemont, G. Flamant: Int. J. Hydrogen Energy 33 (2008), p.6021.

Google Scholar

[15] P. Charvin, S. Abanades, E. Bêche, F. Lemont, G. Flamant: Solid State Ionics 180 (2009), p.1003.

DOI: 10.1016/j.ssi.2009.03.015

Google Scholar

[16] W.C. Chueh, S.M. Haile, ChemSusChem 2 (2009), p.735.

Google Scholar

[17] F. Lemort, P. Charvin, C. Lafon, M. Romnicianu: Int. J. Hydrogen Energy 31 (2006), p. (2063).

Google Scholar

[18] T. Kodama, Y. Nakamuro, T. Mizuno: J. Solar Energy Eng. 128 (2006), p.3.

Google Scholar

[19] H. Kaneko, T. Miura, A. Fuse, H. Ishihara, S. Taku, H. Fukuzumi, Y. Naganuma, Y. Tamaura: Energy & Fuels 21 (2007), p.2287.

DOI: 10.1021/ef060581z

Google Scholar

[20] R.B. Diver, J.E. Miller, M.D. Allendorf, N. Siegel, R.E. Hogan: J. Solar Energy Eng. 130 (2008), 041001-1.

Google Scholar

[21] M. Roeb, M. Neises, J. -P. Säck, P. Rietbrock, N. Monnerie, J. Dersch, M. Schmitz, C. Sattler: Int. J. Hydrogen Energy 34 (2009), p.4537.

DOI: 10.1016/j.ijhydene.2008.08.049

Google Scholar

[22] C. Wieckert, E. Guillot, M. Epstein, G. Olalde, S. Santén, U. Frommherz, S. Kräupl, T. Osinga, A. Steinfeld: J. Solar Energy Eng. 129 (2007), p.190.

DOI: 10.1115/1.2711471

Google Scholar

[23] M. Epstein, G. Olalde, S. Santén, A. Steinfeld, C. Wieckert.: J. Solar Energy Eng. 130 (2008), 014505-1.

DOI: 10.1115/1.2807214

Google Scholar

[24] M.E. Gálvez, P.G. Loutzenhiser, I. Hischier, A. Steinfeld: Energy Fuels 22 (2008), p.3544.

Google Scholar

[25] P.G. Loutzenhiser, M.E. Gálvez, I. Hischier, A. Stamatiou, A. Frei, A. Steinfeld: Energy Fuels 23 (2009), p.2832.

Google Scholar

[26] A. Stamatiou, P.G. Loutzenhiser, A. Steinfeld: Energy Fuels 24 (2010), p.2716.

Google Scholar

[27] J.E. Miller, M.D. Allendorf, R.B. Diver, L.R. Evans, N.P. Siegel, J.N. Stuecker: J. Mater. Sci. 43 (2008), p.4714.

Google Scholar

[28] J. Mantzaras: Combust. Sci. Technol. 180 (2008), p.1137.

Google Scholar

[29] M.E. Dry: Catal. Today 71 (2002), p.227.

Google Scholar

[30] K. Lackner: Science 300 (2003), p.1677.

Google Scholar

[31] V. Nikulshina, C. Gebald, A. Steinfeld: Chem. Eng. J. 146 (2009), p.244.

Google Scholar

[32] P.L. Spath, W.A. Amos: J. Solar Energy Eng. 125 (2003), p.159.

Google Scholar

[33] G. Maag, G. Zanganeh, A. Steinfeld: Int. J. Hydrogen Energy 34 (2009), p.7676.

Google Scholar

[34] S. Rodat, S. Abanades, G. Flamant: Energy Fuels 23 (2009), p.2666.

Google Scholar

[35] S. Möller, D. Kaucic, C. Sattler: J. Solar Energy Eng. 128 (2006), p.16.

Google Scholar

[36] J. Petrasch, F. Meier, H. Friess, A. Steinfeld: Int. J. Heat Fluid Flow 29 (2008), p.315.

Google Scholar

[37] J. Petrasch, P. Wyss, R. Stämpfli, A. Steinfeld: J. Am. Ceram. Soc. 91 (2008), p.2659.

Google Scholar

[38] A. Z'Graggen, A. Steinfeld: Int. J. Hydrogen Energy 33 (2009), p.5484.

Google Scholar

[39] N. Piatkowski, C. Wieckert, A. Steinfeld: Fuel Processing Technology 90 (2009), p.360.

Google Scholar

[40] C. Perkins, A.W. Weimer: AIChE J. 55 (2009), p.286.

Google Scholar

[41] T. Melchior, C. Perkins, P. Lichty, A.W. Weimer, A. Steinfeld: Chem. Eng. Proc. 48 (2009), p.1279.

Google Scholar

[42] P. Lichty, C. Perkins, B. Woodruff, C. Bingham, A.W. Weimer: J. Solar Energy Eng. 132 (2010), 011012-1.

Google Scholar

[43] Sunlight in Your Tank, Science 326 (2009), p.1471.

Google Scholar

[44] T. Pregger, D. Graf, W. Krewitt, C. Sattler, M. Roeb, S. Möller: Int. J. Hydrogen Energy 34 (2009), p.4256.

DOI: 10.1016/j.ijhydene.2009.03.025

Google Scholar

[45] R. Felder, A. Meier: J. Solar Energy Eng. 130 (2008), 011017-1.

Google Scholar

[46] D. Graf, N. Monnerie, M. Roeb, M. Schmitz, C. Sattler: Int. J. Hydrogen Energy 33 (2008), p.4511.

Google Scholar