Chemical Diversity of Apatites

Article Preview

Abstract:

Apatites can accommodate a large number of vacancies and afford multiple ionic substitutions determining their reactivity and biological properties. Unlike other biominerals they offer a unique adaptability to various biological functions. The diversity of apatites is essentially related to their structure and to their mode of formation. Special charge compensation mechanisms allow molecular insertions and ion substitutions and determine to some extent their solubility behaviour. Apatite formation at physiological pH involves a structured surface hydrated layer nourishing the development of apatite domains. This surface layer contains relatively mobile and exchangeable ions, and is mainly responsible for the surface properties of apatite crystals from a chemical (dissolution properties, ion exchange ability, ion insertions, molecule adsorption and insertions) and a physical (surface charge, interfacial energy) point of view. These characteristics are used by living organisms and can also be exploited in material science.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

27-36

Citation:

Online since:

October 2006

Export:

Price:

[1] T.J. White, D. ZhiLi: Acta Cristallographica B. Vol. 59 (2003), p.1.

Google Scholar

[2] A.Z. Mason, J.A. Nott: Aquatic Toxicology. Vol. 1 (1981), p.239.

Google Scholar

[3] J.C. Elliott: Rev. Miner. Geochem. Vol. 48 (2002), p.427.

Google Scholar

[4] W.F. De Jong: Rec. Trav. Chim. Pays-Bas Vol. 45 (1926), p.445.

Google Scholar

[5] J.C. Elliott, P.E. Mackie, R.A. Young: Science. Vol. 180 (1973), p.1055.

Google Scholar

[6] G. Montel, G. Bonel, J.C. Heughebaert, J.C. Trombe, C. Rey: J. Cryst. Growth Vol. 53 (1981), p.74.

Google Scholar

[7] R.Z. LrGeros, O.R. Trautz, E. Klein, J.P. LeGeros: Experientia Vol. 25 (1969), p.5.

Google Scholar

[8] C. Rey, B. Collins, T. Goehl, R.I. Dickson, M.J. Glimcher: Calcif. Tissue Int. Vol. 45 (1989), p.157.

Google Scholar

[9] C. Rey, B. Collins, M. Shimizu, M.J. Glimcher: Calcif. Tissue Int. Vol. 46 (1990), p.384.

Google Scholar

[10] Y. Wu, J. Ackerman, H-M. Kim, C. Rey, A. Barroug, M.J. Glimcher: J. Bone Miner. Res. Vol. 17 (2002), p.472.

Google Scholar

[11] C. Combes, C. Rey, S. Mounic: Key Engin. Mater. Vol. 192-195 (2001), p.143.

Google Scholar

[12] R. Legros, N. Balmain, G. Bonel: Calcif. Tissue Int. Vol. 41 (1987), p.137.

Google Scholar

[13] C. Rey, J.L. Miquel, L. Facchini, A.P. Legrand, M.J. Glimcher: Bone. Vol. 16 (1995), p.583.

DOI: 10.1016/8756-3282(95)00101-i

Google Scholar

[14] C. Rey, V. Renugopalakrishnan, B. Collins, M.J. Glimcher: Calcif. Tissue Inter. Vol. 49 (1991), p.251.

Google Scholar

[15] S. Cazalbou, C. Combes, D. Eichert, C. Rey, M.J. Glimcher: J. Bone Miner. Metab. Vol. 22 (2004), p.310.

DOI: 10.1007/s00774-004-0488-0

Google Scholar

[16] S. Cazalbou, D. Eichert, X. Ranz, C. Drouet, C. Combes, M.F. Harmand, C. Rey: J. mater. Sci. Mater. Med. Vol. 16 (2005), p.405.

DOI: 10.1007/s10856-005-6979-2

Google Scholar

[17] N. Eidelman, L. Chow, W.E. Brown: Calcif. Tissue Inter. Vol. 40 (1987), p.71.

Google Scholar

[18] T. Kokubo, H. Takadama: Biomaterials Vol. 27 (2006), p.2907.

Google Scholar

[19] M.J. Glimcher: Disorders of bone and mineral metabolism Ed F.L. Coe, M.J. Favus (Raven Press1992), p.265.

Google Scholar

[20] R. M Wilson, J.C. Elliott, S. Dowker: L.M. Rodriguez-Lorenzo. Biomaterials, Vol. 26 (2005), p.1317.

Google Scholar

[21] J.C. Labarthe, G. Bonel, G. Montel: Annales de Chimie (Fr). Vol. 8, (1973), p.289.

Google Scholar

[22] J.L. Meyer, B.O. Fowler: Inorg. Chem. Vol. 21 (1982), p.3029.

Google Scholar

[23] R.Z. LeGeros, J.P. Legeros: Bioceramics 9th, (Elsevier, 1996), p.161.

Google Scholar

[24] D. Eichert, H. Sfihi, C. Combes, C. Rey: Key Eng. Mater. Vol. 254-256 (2004), p.927.

Google Scholar

[25] D. Eichert, C. Combes, C. Drouet, C. Rey: Key Eng. Mater. Vol. 284-286 (2005), p.3.

Google Scholar

[26] C. Rey, J.C. Trombe, G. Montel: J. Inorg. Nucl. Chem. Vol. 40 (1978), p.27.

Google Scholar

[27] C. Rey, J.C. Trombe, G. Montel: J. Chem. Res. Vol. 188-189 (1978), p.2401.

Google Scholar

[28] M. Markovic, B.O. Fowler, W.E. Brown: Chem. Mater. Vol. 5 (1993), p.1401.

Google Scholar

[29] M. Vignoles, G. Bonel, D. Holcomb, R.A. Young: Calcif. Tissue Int. 1988, 43, 33.

Google Scholar

[30] E.C. Moreno, M. Kresak, R.T. Zahradnik: Caries Res. Vol. 11 (1977), p.142.

Google Scholar

[31] A.A. Baig, J.L. Fox, Z. Wang, W.I. Higuchi, S.C. Milleer, A.M. Barry, M. Otsuka: Calcif. Tissue Int. Vol. 64 (1999), p.329.

Google Scholar

[32] T. Suzuki, G. Hirose, S. Oishi: Mater. Res. Bull. Vol. 39 (2004), p.103.

Google Scholar

[33] M.S. Tung, D. Skrtic: Octacalcium Phosphate (Monogr. Oral Sci. Karger, Basel 2001). Vol. 18, p.112.

Google Scholar

[34] C. Rey, A. Tofighi, S. Mounic, C. Combes, D. Lee: Actualités en Biomatériaux (Vol VI, Editions Romillat, Paris 2002) p.27.

Google Scholar