Multiscale Model of Shape Rolling Taking into Account the Microstructure Evolution – Frontal Cellular Automata

Article Preview

Abstract:

Properties of traditional materials including steels can be improved by using the prediction and control of microstructure evolution in technological processes. Models of microstructure evolution, which take into account the technological conditions, allow to optimize the process in view of final product properties. A multiscale model of microstructure evolution have been developed and adopted for simulation of the shape rolling process. The model contains module based on finite element method (FEM) for simulation of technological processes and cellular automata (CA) module for simulation of microstructure evolution. Design and selection of grooves and simulations of rolling process in macro scale are realized by FEM. The modeling results obtained by FEM are transferred to CA and used as input data. The results of simulations of microstructure evolution can be presented as snapshots of microstructure at arbitrary time, changes of average grain size, a grain size distribution, recrystallization fraction and flow stress during the process. The results of microstructure evolution obtained by FCA for 5mm round bars rolled in diamond and oval grooves are presented in the paper.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 998-999)

Pages:

545-548

Citation:

Online since:

July 2014

Export:

Price:

* - Corresponding Author

[1] D.S. Svyetlichnyy and Łach Ł.: Steel Res. Int. Vol. spec. ed. (2012), p.1151.

Google Scholar

[2] C. Devadas, I.V. Samarasekera and E.B. Hawbolt: Metal. Trans. A Vol. 22 (1991), p.335.

Google Scholar

[3] L.Q. Chen: Annu. Rev. Mater. Res. Vol. 32 (2002), p.113.

Google Scholar

[4] M. Bernacki, Y. Chastel, T. Coupez and R.E. Logé: Scr. Mater. Vol. 58 (2008), p.1129.

Google Scholar

[5] D. Weygand, Y. Bréchet and J. Lépinoux: Adv. Eng. Mater. Vol. 3 (2001), p.67.

Google Scholar

[6] K. Okuda and A.D. Rollett: Comp. Mater. Sci. Vol. 34 (2005), p.264.

Google Scholar

[7] T. Belytschko, R. Gracie and G. Ventura: Mater. Sci. Eng. Vol. 17 (2009), p.1.

Google Scholar

[8] D. Svyetlichnyy, J. Majta, K. Muszka and Ł. Łach: AIP Conf. Proc. Vol. 1315 (2010), p.1473.

Google Scholar

[9] D.S. Svyetlichnyy: ISIJ Int. Vol. 52 (2012), p.559.

Google Scholar

[10] Ł. Łach and D. Svyetlichnyy: Key Eng. Mat. Vol. 504–506 (2012), p.187.

Google Scholar

[11] D.S. Svyetlichnyy, J. Nowak and Ł. Łach: Lect. Not. Comp. Sci. Vol. 47 (2012), p.494.

Google Scholar

[12] D.S. Svyetlichnyy: Comp. Mater. Sci. Vol. 77 (2013), p.408.

Google Scholar

[13] D.S. Svyetlichnyy: ISIJ Int. Vol. 54 (2014), p.1386.

Google Scholar

[14] Ch.A. Gandin and M. Rappaz: Acta Metall. Mater. Vol. 42 (1994), p.2233.

Google Scholar

[15] Ł. Łach and D. Svyetlichnyy: Adv. Mater. Res. Vol. 871 (2014), p.263.

Google Scholar

[16] Ł. Łach and D. Svyetlichnyy: Multiscale model of shape rolling taking into account the microstructure evolution – finite element modeling, Adv. Mater. Res. (2014), in press.

DOI: 10.4028/www.scientific.net/amr.1025-1026.379

Google Scholar

[17] D.S. Svyetlichnyy: Comp. Mater. Sci. Vol. 50 (2010), p.92.

Google Scholar

[18] Ł. Łach and D.S. Svyetlichnyy: Frontal cellular automata simulations of microstructure evolution during shape rolling, Mater. Res. Innov. (2014), in press.

DOI: 10.1179/1432891714z.000000000971

Google Scholar