Two-Dimensional Roll Bite Model with Lubrication for Cold Strip Rolling

Article Preview

Abstract:

To help optimize cold rolling operations, mixed lubrication models have been developed and embedded in roll bite models. The resulting models combine micro-fluidics in a porous medium (the lubricant flow between the contacting rough surfaces), microplasticity (roughness flattening / scratching), macro-plasticity (strip reduction) and roll thermo-elasticity. They are therefore really complex and need a lot of physical data. Based on previous developments, a new, simpler version of our lubrication model has been coupled with a new roll bite model recently presented: slab method for the strip elastic-plastic deformation (Prandtl-Reuss equations), a complete influence functions set for the roll deformation with circumferential displacements, and an efficient, adaptive relaxation technique when iterating between roll and strip models. The lubrication model is elaborated on Wilson and Sheu’s mixed lubrication model. The paper describes the implementation and compares its results with our previous, more complex version; a reasonable agreement is found. Several test cases of increasing difficulty show the robustness of the model and of its implementation. As a conclusion, a brief perspective is provided on how this new type of roll bite model could be used in industry.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 966-967)

Pages:

48-62

Citation:

Online since:

June 2014

Export:

Price:

* - Corresponding Author

[1] Laugier, M.; Tornicelli, M.; Silvy Leligois, C.; Bouquegneau, D.; Launet, D.; Alvarez, J.A.: Flexible Lubrication concept, the future of cold rolling lubrication, Proc. 4th Int. Conf. on Tribology in Manufacturing Processes, Nice, France, (2010).

DOI: 10.1177/1350650111414514

Google Scholar

[2] Von Karman, T.: Beitrag zur Theorie des Walzvorganges, Zeitschrift für Angewandte Mathematik u. Mechanik, 1925, 5, pp.139-141.

DOI: 10.1002/zamm.19250050213

Google Scholar

[3] Orowan, E.: Graphical calculation of roll pressure with the assumptions of homogeneous compression and slipping friction, Proceedings of the Institution of Mechanical Engineers, 1943, 150, pp.140-167.

DOI: 10.1243/pime_proc_1943_150_025_02

Google Scholar

[4] Bland, D. R.; Ford, H.: The calculation of roll force and torque in cold strip rolling with tensions, Proceedings of the Institution of Mechanical Engineers, 1948, 159, pp.144-153.

DOI: 10.1243/pime_proc_1948_159_015_02

Google Scholar

[5] Hitchcock, J. H.: Roll Neck Bearings, Report of ASME Research Committee, (1935).

Google Scholar

[6] Grimble, M. J.; Fuller, M.A.; Bryant, G.F.: A non-circular arc roll force model for cold rolling, International Journal for Numerical Methods in Engineering, 1978, 12, pp.643-663.

DOI: 10.1002/nme.1620120409

Google Scholar

[7] Quan, Z.: Deformation characteristics of the cross shear cold rolling (CSCR) of ultra-thin strip and the theory of the Elastic Plug, Proc. 2nd Int. Conf. on Advanced Technology of Plasticity, Tokyo, Japan, (1984).

Google Scholar

[8] Jortner, D.; Osterle, J.F.; Zorowski, C.F.: An analysis of cold strip rolling, International Journal of Mechanical Science, 1960, 2, pp.179-194.

DOI: 10.1016/0020-7403(60)90003-5

Google Scholar

[9] Fleck N. A.; Johnson, K.L.: Towards a new theory of cold rolling thin foil, International Journal of Mechanical Science, 1987, 29, 7, pp.507-524.

DOI: 10.1016/0020-7403(87)90012-9

Google Scholar

[10] Fleck N. A.; Johnson, K.L.; Mear, M.E.; Zhang, L.C.: Cold rolling of foil, Proceedings of the Institution of Mechanical Engineers, 1992, 206, pp.119-131.

DOI: 10.1243/pime_proc_1992_206_064_02

Google Scholar

[11] Matsumoto, H.; Shiraishi, T.: Elastic-Plastic theory of temper rolling with noncircular roll flattening, Journal of the JSTP 2008, 49-565, pp.153-157, in Japanese.

DOI: 10.9773/sosei.49.153

Google Scholar

[12] Matsumoto, H.: Elastic-Plastic theory of cold and temper rolling, Proc. 8th Int. Conf. on Technology of Plasticity, Verona, Italy, (2005).

Google Scholar

[13] Krimpelstätter, K.: Non circular arc temper rolling model considering radial and circumferential displacements, PhD Dissertation, Linz University, Austria, (2005).

DOI: 10.1063/1.1766586

Google Scholar

[14] Tsao Y.H.; Sargent L.B.: A mixed lubrication model for the cold rolling of metals, ASLE Transactions, 1977, 20, pp.55-63.

DOI: 10.1080/05698197708982817

Google Scholar

[15] Patir, N.; Cheng, H.S.: Application of average flow model to lubrication between rough sliding surfaces, ASME Journal of Lubrication Technology, 1979, 101, pp.220-229.

DOI: 10.1115/1.3453329

Google Scholar

[16] Sutcliffe, M.: Surface asperity deformation in metal forming processes, International Journal of Mechanical Sciences, 1988, 30, 11, pp.847-868.

DOI: 10.1016/0020-7403(88)90010-0

Google Scholar

[17] Wilson, W.R.D.; Sheu, S.: Real area of contact and boundary friction in metal forming, International Journal of Mechanical Sciences, 1988, 30, pp.475-489.

DOI: 10.1016/0020-7403(88)90002-1

Google Scholar

[18] Sutcliffe, M.; Johnson, K.L.: Lubrication in cold strip rolling in the mixed, regime, Proceedings of the Institution of Mechanical Engineers, 1990, 204, pp.249-261.

DOI: 10.1243/pime_proc_1990_204_064_02

Google Scholar

[19] Sheu, S.; Wilson, W.R.D.: Mixed Lubrication of Strip Rolling, STLE Tribology Transactions, 1994, 37, pp.483-493.

DOI: 10.1080/10402009408983321

Google Scholar

[20] Chang, D.; Marsault, N.; Wilson, W.R.D.: Lubrication of strip rolling in the low-speed mixed regime, STLE Tribology Transactions, 1996, 39, 2, pp.407-415.

DOI: 10.1080/10402009608983546

Google Scholar

[21] Lin, H. S.; Marsault, N.; Wilson, W.R.D.: A Mixed Lubrication Model for Cold Strip Rolling: Part I-Theoretical, STLE Tribology Transactions, 1998, 41, pp.317-326.

DOI: 10.1080/10402009808983754

Google Scholar

[22] Qiu, Z.L.; Yuen, W. Y. D.; Tieu, A.K.: Mixed-film lubrication theory and tension effects on metal rolling processes, ASME Journal of Tribology, 1999, 121, pp.908-915.

DOI: 10.1115/1.2834154

Google Scholar

[23] Marsault, N.; Montmitonnet, P.; Deneuville, P. ; Gratacos, P. : Un modèle de laminage lubrifié en régime mixte, Revue de Métallurgie – Science et Génie des Matériaux, 2001, 98, 5, pp.423-433, in French.

DOI: 10.1051/metal:2001196

Google Scholar

[24] Le, H.R.; Sutcliffe, M.: Rolling of Thin Strip and Foil: Application of a tribological Model for 'Mixed', Lubrication, ASME Journal of Tribology, 2002, 124, pp.129-136.

DOI: 10.1115/1.1402179

Google Scholar

[25] Carretta, Y.; Stephany, A.; Legrand, N.; Laugier, M.; Ponthot, J.P.: Metalub – a slab method software for the numerical simulation of mixed lubrication regime. Application to cold rolling, Proc. 4th Int. Conf. on Tribology in Manufacturing Processes, Nice, France, (2010).

DOI: 10.1177/1350650111410126

Google Scholar

[26] Dbouk, T.; Montmitonnet, P.; Suzuki, N.; Takahama, Y.; Legrand, N.; Ngo, T.; Matsumoto, H.: Advanced roll bite models for cold and temper rolling processes. Proc. 9th Int. Rolling Conf. & 6th European Rolling Conf., Venice, Italy, (2013).

DOI: 10.4028/www.scientific.net/amr.966-967.48

Google Scholar

[27] Barus, C.: Isothermals, isopiestics and isometrics relative to viscosity, American Journal of Science, 1893, 45, 87-96.

DOI: 10.2475/ajs.s3-45.266.87

Google Scholar

[28] Roelands, C.: Correlational Aspects of the viscosity-temperature-pressure relationship of lubricating oils, PhD Dissertation, Technische Hogeschool Delft, (1966).

DOI: 10.1115/1.3451519

Google Scholar

[29] Wilson, W. R. D.; Walowit, J. A.: An isothermal hydrodynamic lubrication theory for strip rolling with front and back tension, Proc. IMechE Tribology Convention, Douglas, Isle of Man, UK, (1972).

Google Scholar

[30] Tabary, P.E.; Sutcliffe, M.P.F.; Porral F.; Deneuville, P.: Measurements of Friction in Cold Metal Rolling, ASME Journal of Tribology, 1996, 118, pp.629-636.

DOI: 10.1115/1.2831584

Google Scholar