Nanoscale Understanding of Bond Formation during Cold Welding of Aluminum and Steel

Article Preview

Abstract:

Cold welding, e.g. by cold forging, is a smart manufacturing technology, enabling novel multi material designs. A material combination, which is particularly attractive for manufacturing, though challenging to handle in a cold welding process, is steel and aluminum. We investigate the bond formation between cold forged C 15 (mainly primary heat treated) and AW 6082. Analysis starts with numerical simulations using the finite element analysis (FEA) to identify optimum conditions for bond formation. The bond strength was determined by tensile tests from samples eroded from the cold-welded specimen. Best performing samples showed a maximum tensile strength of ~200 MPa with ductile failure in the AW 6082. Transmission electron microscopy (TEM) inspection of the bonded area between aluminum and steel show a reaction layer consisting of iron and aluminum of few nm thickness throughout the sample. The formation of such a reaction layer is hypothesized to be crucial for bond formation.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 966-967)

Pages:

445-452

Citation:

Online since:

June 2014

Export:

Price:

* - Corresponding Author

[1] Lange, K.: Modern metal forming technology for industrial production (1997). Journal of Materials Processing Technology 71(1): 2–13.

DOI: 10.1016/s0924-0136(97)00113-1

Google Scholar

[2] Mori, K. -i., Bay, N., Fratini, L., Micari, F., Tekkaya, A.E.: Joining by plastic deformation (2013). CIRP Annals - Manufacturing Technology 62(2): 673–94.

DOI: 10.1016/j.cirp.2013.05.004

Google Scholar

[3] M. Liewald, Felde. A., F. Dörr, E. Hajyheydari, R. Henry, M. Kannewurf, C. Mletzko, K. Riedmüller, T. Schiemann (2013).

Google Scholar

[4] Kleiner, M., Tekkaya, A.E., Becker, D., Pietzka, D., Schikorra, M.: Combination of curved profile extrusion and composite extrusion for increased lightweight properties (2009). Prod. Eng. Res. Devel. 3(1): 63–8.

DOI: 10.1007/s11740-008-0146-9

Google Scholar

[5] Wagener, H.W., Haats, J.: Pressure welding of corrosion resistant metals by cold extrusion (1994). Journal of Materials Processing Technology 45(1-4): 275–80.

DOI: 10.1016/0924-0136(94)90352-2

Google Scholar

[6] Zhang, W., Bay, N.: Influence of Hydrostatic Pressure in Cold-Pressure Welding (1992). Annals of the CIRP 41/1.

DOI: 10.1016/s0007-8506(07)61207-4

Google Scholar

[7] Bay, N.: Cold Pressure Welding - The Mechanisms Governing Bonding (1979). Journal of Engineering for Industry(101): 121–7.

DOI: 10.1115/1.3439484

Google Scholar

[8] Wohletz S., Özel M., P. Groche (2013).

Google Scholar

[9] Haats, J. (1994): Verfahrensoptimierung beim Kaltpreßschweißen artverschiedener korrosionsbeständiger Metalle. VDI-Verl, Düsseldorf.

Google Scholar

[10] Eizadjou, M., Danesh Manesh, H., Janghorban, K.: Mechanism of warm and cold roll bonding of aluminum alloy strips (2009). Materials & Design 30(10): 4156–61.

DOI: 10.1016/j.matdes.2009.04.036

Google Scholar

[11] Springer, H., Kostka, A., dos Santos, J., Raabe, D.: Influence of intermetallic phases and Kirkendall-porosity on the mechanical properties of joints between steel and aluminium alloys (2011).

DOI: 10.1016/j.msea.2011.02.057

Google Scholar

[12] Awiszus B., K. Kittner (2008).

Google Scholar

[13] Groche, P., Wohletz, S., Stahlmann, J.: Fließende Prozesse in der Drahtverarbeitung: Logistische Potentiale und Herausforderungen einer zinkphosphatfreien Umformtechnik (2012). Werkstattstechnik online 102(10): 684–8.

DOI: 10.37544/1436-4980-2012-10-684

Google Scholar

[14] Bay, N., Clemensen, C., Juelstorp, O., Wanheim, T.: Bond Strength in Cold Roll Bonding (1985). CIRP Annals - Manufacturing Technology 34(1): 221–4.

DOI: 10.1016/s0007-8506(07)61760-0

Google Scholar

[15] Bay, N.: Mechanisms Producing Metallic Bonds in Cold Welding (1983). Welding Journal: 137–42.

Google Scholar

[16] Yoshida, Y., Matsubara, T., Yasui, K., Ishikawa, T., Suganuma, T.: Influence of Processing Parameters on Bonding Conditions in Backward Extrusion Forged Bonding (2012). KEM 504-506: 387–92.

DOI: 10.4028/www.scientific.net/kem.504-506.387

Google Scholar

[17] Zhang, W., Bay, N.: A Numerical Model for Cold Welding of Metals (1996). CIRP Annals - Manufacturing Technology 45(1): 215–20.

DOI: 10.1016/s0007-8506(07)63050-9

Google Scholar