Power Quality Management in Distribution Systems

Article Preview

Abstract:

In this paper, we propose a methodology to classify Power Quality (PQ) in distribution systems based on voltage sags. The methodology uses the KDD process (Knowledge Discovery in Databases) in order to establish a quality level to be printed in labels. The methodology was applied to feeders on a substation located in Curitiba, Parana, Brazil, considering attributes such as sag length (remnant voltage), duration and frequency (number of occurrences on a given period of time). On the Data Mining stage (the main stage on KDD Process), three different techniques were used, in a comparative way, for pattern recognition, in order to achieve the quality classification for the feeders: Artificial Neural Networks (ANN); Support Vector Machines (SVM) and Genetic Algorithms (GA). By printing a label with quality level information, utilities companies (power concessionaires) can get better organized for management and mitigation procedures by establishing clear targets. Moreover, the same way costumers already receive information regarding PQ based on interruptions, they will also be able to receive information based on voltage sags.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 945-949)

Pages:

3060-3068

Citation:

Online since:

June 2014

Export:

Price:

* - Corresponding Author

[1] ANEEL Agência Nacional de Energia Elétrica. (2000). Resolução no. 24, de 27 de janeiro de (2000).

DOI: 10.26512/2016.02.d.20014

Google Scholar

[2] ANEEL Agência Nacional de Energia Elétrica. (2008). Procedimentos de Distribuição de Energia Elétrica no Sistema Elétrico Nacional – PRODIST: Módulo 8 – Qualidade da Energia Elétrica.

DOI: 10.26512/2016.02.d.20014

Google Scholar

[3] A.R.T. Góes. Uma metodologia para a criação de etiqueta de qualidade no contexto de Descoberta de Conhecimento em Bases de Dados: aplicação nas áreas elétrica e educacional. 145 pages. Thesis in Numerical Methods in Engineering; Federal University of Parana, Curitiba, Paraná, Brazil, (2012).

DOI: 10.11606/d.55.2018.tde-28062018-142813

Google Scholar

[4] J.F.L.V. Casteren, L.H.R. Enslin, W.T.J. Hulshorst, W.L. Kilng, M.D. Hamoen and J.F.G. Cobben. A customer oriented approach to the classification of voltage dips. The18th International Conference and exhibition on Electricity Distribution – CIRED, Turin, Italy, pp.1-6, (2005).

DOI: 10.1049/cp:20051064

Google Scholar

[5] J.F.G. Cobben and J.F.L. Casteren. Classification Methodologies for Power Quality. Electrical Power Quality & Utilization Magazine, Vol. 2, no. 1 (2006), pp.11-17.

Google Scholar

[6] M. Oleskovicz, D.V. Coury, A.A.F.M. Carneiro, E.F. Arruda, O. Delmont and S.A. Souza. Estudo comparativo de ferramentas modeANNs de análise aplicadas à qualidade da energia elétrica. Revista Controle & Automação, Vol. 17, no. 3 (2006).

DOI: 10.1590/s0103-17592006000300007

Google Scholar

[7] G.A. Adepoju, S.O.A. Ogunjuyigbe and K.O. Alawode. Application of Neural Network to Load Forecasting in Nigerian Electrical Power System. The Pacific Jounal of Science and Technology, Vol. 8, no. 1 (2007), pp.68-72.

Google Scholar

[8] O. Gencer, S. Ozturk and T. Erfidan. A new approach to voltage sag detection based on wavelet transform. Electrical Power and Energy Systems, Vol. 32, no. 2 (2010), pp.133-140.

DOI: 10.1016/j.ijepes.2009.06.025

Google Scholar

[9] R. Kappor and M.K. Saini. Hybrid demodulation concept and harmonic analysis for single/multiple power quality events detection and classification. Electrical Power and Energy Systems, Vol. 33, no. 10 (2011), pp.1608-1622.

DOI: 10.1016/j.ijepes.2011.06.006

Google Scholar

[10] P.K. Dash, M. Padhee, S.K. Barik. Estimation of power quality indices in distributed generation systems during power islanding conditions. Electrical Power and Energy Systems, Vol. 36, no. 1 (2012), pp.18-30.

DOI: 10.1016/j.ijepes.2011.10.019

Google Scholar

[11] M.T.A. Steiner, N.Y. Soma, T. Shimizu, J.C. Nievola and P.J. Steiner Neto. Abordagem de um problema médico por meio do processo de KDD com ênfase à análise exploratória dos dados. Revista Gestão & Produção, Vol. 13, no. 2 (2006), pp.325-337.

DOI: 10.1590/s0104-530x2006000200013

Google Scholar

[12] S. Li, S. Kuo (2008). Knowledge discovery in financial investment for forecasting and trading strategy through wavelet-based SOM networks. Expert Systems with Applications, Vol. 34, no. 2 (2008), p.935–951.

DOI: 10.1016/j.eswa.2006.10.039

Google Scholar

[13] L. Liu, H. Qi and D. Li. A research for Data Mining Technology based in Fuzzy Neural Network. Advanced Materials Research, Vol. 433-440: pp.2509-2512, (2012).

DOI: 10.4028/www.scientific.net/amr.433-440.2509

Google Scholar

[14] B.K. Bradwaj and S. Pal. Mining Educational Data to Analyze Students'Performance. International JouANNl of Advanced Computer Science and Applications, Vol. 2, no. 6 (2011), pp.63-69.

Google Scholar

[15] R. Arora and R. Bhatia. Optimization of Automation in Fuzzy Decision Rules. Second International Conference on Advanced Computing & Communication Technologies. Haryana, Índia, pp.41-45, (2012).

DOI: 10.1109/acct.2012.80

Google Scholar

[16] R.J. Sassi. An hybrid architecture for clusters analysis: rough sets theory and self-organizing map artificial neural network. Pesquisa Operacional, Vol. 32, no. 1 (2012), pp.139-164.

DOI: 10.1590/s0101-74382012005000001

Google Scholar

[17] U. Fayyad, G. Piatetsky-Shapiro, P. Smyth and R. Uthurusamy. Advances in Knowledge Discovery & Data Mining. 1st. ed. American Association for Artificial Intelligence, Menlo Park, California, (1996).

Google Scholar

[18] S. Haykin. Neural Networks – A Comprehensive Foundation. 2nd ed. Prentice Hall, New Jersey, (1999).

Google Scholar

[19] A.H. Sung and S. Mukkamala. Identifying important features for intrusion detection using support vector machines and neural networks. Symposium on Applications and the Internet, pp.209-216, (2003).

DOI: 10.1109/saint.2003.1183050

Google Scholar

[20] R. Khemchandani, Jayadeva and S. Chandra. Knowledge based proximal support vector machines. European Journal of Operational Research, Vol. 195, no. 3 (2009), pp.914-923.

DOI: 10.1016/j.ejor.2007.11.023

Google Scholar

[21] C.H. Ding, and I. Dubchak. Multi-class protein fold recognition using support vector machines and neural networks. Bioinformatics, Vol. 17, no. 4 (2001), pp.349-358.

DOI: 10.1093/bioinformatics/17.4.349

Google Scholar

[22] D.E. Goldberg. Genetic algorithms in search, optmization, and machines learning. Addison-Wesley Publishing Company, Inc. Massachusetts, (1989).

Google Scholar