Investigations on the Fatigue Crack Propagation Threshold in Very High Cycle Fatigue

Article Preview

Abstract:

Pariss law of fatigue crack propagation rate is well applied in the defect-tolerance fatigue approach. When carry out same approach in the very high cycle fatigue domain, the understanding of mechanism about fatigue crack propagation threshold which is obviously important, is helped. In the present work here, the fatigue crack propagation threshold of a surface crack for an Armco iron loaded in the VHCF regime was investigated by a new approach which combines the fracture surface analysis and the temperature recording on the surface during the test by an infra-red camera. The experiments were carried out on a sheet specimen under a 20 kHz ultrasonic frequency loading with IR images registration. Three stages of fatigue crack were identified with different mechanisms. It is found that the transition between initiation and crack propagation corresponds to the intrinsic fatigue threshold. It takes more than 99% of the gigacycle fatigue life to achieve this transition size.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 891-892)

Pages:

357-362

Citation:

Online since:

March 2014

Export:

Price:

* - Corresponding Author

[1] C. Wang, PhD thesis, Microplasticité et dissipation en fatigue à très grand nombre de cycles du fer et de l'acier, Université Paris Ouest, 7 juin (2013).

Google Scholar

[2] Ngoc Lam Phung, PhD thesis, Fatigue sous très faible amplitude de contrainte: analyse des mécanismes précurseurs de l'amorçage de fissures dans le cuivre polycristallin, 10 décembre (2012).

Google Scholar

[3] Murakami, Y., (2002). The Mechanism of Fatigue Failure of Steels in the Ultralong Life Regime of N>107 Cycles. In: Metal Fatigue : Effects of Small Defects and Non metallic Inclusions, Elsevier, Oxford, 2002, UK.

DOI: 10.1016/b978-008044064-4/50015-3

Google Scholar

[4] X. Li, T. Sakai, Q. Li, L.T. Lu, P. Wang, Reliability evaluation on very high cycle fatigue property of GCr15 bearing steel, Int Jl Fatigue 32(2010)1096-1107.

DOI: 10.1016/j.ijfatigue.2009.12.008

Google Scholar

[5] K. Shiozawa, Y. Morii, , S. Nishino, L. Lu, Int Jl Fatigue 2006 ; 28 : 1521-1532.

Google Scholar

[6] C. Wang, D. Wagner, C. Bathias, Study of fatigue crack mechanism on an armco iron in the gigacycle fatigue by temperature recording and microstructural observations, 13th Int Conf on Fracture, juin 2013, Beijing, Chine.

DOI: 10.1016/j.ijfatigue.2012.06.005

Google Scholar

[7] Z. Huang, D. Wagner, C. Bathias, P.C. Paris, Subsurface Crack Initiation and Propagation Mechanism in the Gigacycle Fatigue, Acta Materiala, 58 (2010), 6046-6054.

DOI: 10.1016/j.actamat.2010.07.022

Google Scholar

[8] Paris, P.C., Marines-Garcia I., R.W. Hertzberg, K. Donald. The Relationship of Effective Stress Intensity, Elastic Modulus and Burgers-Vector on Fatigue Crack Growth as Associated with « Fish Eye » Gigacycle Phenomena. Proc . Very High Cycle Fatigue 3, Ritsumeikan University, Kusatsu, Japan, (2004).

Google Scholar

[9] C. Wang, D. Wagner, Q.Y. Wang, C. Bathias – Gigacycle fatigue initiation mechanism in Armco iron, Int Jl Fatigue, Vol 45(2012)91-97.

DOI: 10.1016/j.ijfatigue.2012.06.005

Google Scholar

[10] C. Wang, D. Wagner, C. Bathias, Fatigue crack initiated from PSB at VHCF in Iron, 13th Int Conf on Fracture, juin 2013, Beijing, Chine.

Google Scholar

[11] Y. Hong, Z. Lei, C. Sun, A. Zhao, Characteristics of crack interior initiation and early growth originated from inclusion for very high cycle fatigue of high strength steels, CP 2012, Gaeta, Italy.

DOI: 10.1016/j.ijfatigue.2013.02.023

Google Scholar