Comparative Investigation of Structural and Optical Properties of Si-Rich Oxide Films Fabricated by Magnetron Sputtering

Article Preview

Abstract:

RF magnetron sputtering of two separate silicon and oxide (SiO2 or Al2O3) targets in pure argon plasma was used for deposition of Six(SiO2)1-x and Six(Al2O3)1-x films with x=0.15-0.7 on long fused quarts substrate. The effect of post-fabrication treatments on structural and light emitting properties of the films with different x values was investigated by means of Raman scattering, electron paramagnetic resonance and X-ray diffraction as well as by photoluminescence (PL) methods. The formation of amorphous Si clusters upon deposition process was found for the both types of films. The annealing treatment at 1150°C during 30 min results in formation of Si nanocrystallites (Si-ncs). The latter were found to be larger in Six(Al2O3)1-x films than that in Six(SiO2)1-x counterparts with the same x values and are under tensile stresses. The investigation of photoluminescence properties of annealed films of both types revealed the appearance of visible-near infrared light emission. The Six(SiO2)1-x films demonstrated one broad PL band which peak position shifts gradually to from 1.4 eV to 1.8 eV with the x decrease. Contrary to this, for the Six(Al2O3)1-x films two overlapped PL bands were observed in the 1.4-2.4 eV spectral range with peak positions at ~2.1 eV and ~1.7 eV accompanied by near-infrared tail. Comparative analysis of PL spectra of both types samples showed that the main contribution to PL spectra of Six(SiO2)1-x films is given by exciton recombination in the Si-ncs whereas PL emission of Six(Al2O3)1-x films is caused mainly by carrier recombination either via defects in matrix or via electron states at the Si-ncs/matrix interface.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

117-124

Citation:

Online since:

November 2013

Export:

Price:

[1] L.T. Canham, Silicon quantum wire array fabrication by electrochemical and chemical dissolution of wafers, Appl. Phys. Lett. 57 (1990) 1046-1048.

DOI: 10.1063/1.103561

Google Scholar

[2] V. Lehman, U. Gösele, Porous silicon formation: A quantum wire effect, Appl. Phys. Lett. 58 (1991) 856-858.

DOI: 10.1063/1.104512

Google Scholar

[3] T. Shimizu-Iwayama, S. Nakao, K. Saitoh, Visible photoluminescence in Si+-implanted thermal oxide films on crystalline Si, Appl. Phys. Lett. 65 (1994) 1814-1816.

DOI: 10.1063/1.112852

Google Scholar

[4] X.Y. Chen, Y.F. Lu, L.J. Tang, Y.H. Wu, B.J. Cho, X.J. Xu, J.R. Dong, W.D. Song, Annealing and oxidation of silicon oxide films prepared by plasma-enhanced chemical vapor deposition, J. Appl. Phys. 97 (2005) 014913.

DOI: 10.1063/1.1829789

Google Scholar

[5] L. Khomenkova, N. Korsunska, V. Yukhimchuk, B. Jumaev, T. Torchinska, A. Vivas Hernandez, A. Many, Y. Goldstein, E. Savir, J. Jedrzejewski, Nature of visible luminescence and its excitation in Si-SiOx systems, J. Lumin. 102-103 (2003) 705-711.

DOI: 10.1016/s0022-2313(02)00628-2

Google Scholar

[6] N. Baran, B. Bulakh, Ye. Venger, N. Korsunska, L. Khomenkova, T. Stara, Y. Goldstein, E. Savir, J. Jedrzejewski, The structure of Si–SiO2 layers with high excess Si content prepared by magnetron sputtering, Thin Solid Films 517 (2009) 5468–5473.

DOI: 10.1016/j.tsf.2009.01.154

Google Scholar

[7] L. Khomenkova, N. Korsunska, T. Stara, Ye. Venger, C. Sada, E. Trave, Y. Goldstein, J. Jedrzejewski, E. Savir, Depth redistribution of components of SiOx layers prepared by magnetron sputtering in the process of their decomposition, This Solid Films 515 (2007).

DOI: 10.1016/j.tsf.2007.02.003

Google Scholar

[8] G.G. Qin, X.S. Liu, S.Y. Ma, J. Lin, G.Q. Yao, X.Y. Lin, K.X. Lin, Photoluminescence mechanism for blue-light-emitting porous silicon, Phys. Rev. B 55 (1997) 12876-12879.

DOI: 10.1103/physrevb.55.12876

Google Scholar

[9] L. Khomenkova, X. Portier, J. Cardin, F. Gourbilleau, Thermal stability of high-k Si-rich HfO2 layers grown by RF magnetron sputtering, Nanotechnology 21 (2010) 285707 (10 pages).

DOI: 10.1088/0957-4484/21/28/285707

Google Scholar

[10] R.F. Steimle, R. Muralidhar, R. Rao, M. Sadd, C.T. Swift, J. Yater, B. Hradsky, S. Straub, H. Gasquet, L. Vishnubhotla, E.J. Prinz, T. Merchant, B. Acred, K. Chang, B.E. White Jr, Silicon nanocrystal non-volatile memory for embedded memory scaling, Microel. Reliab. 47 (2007).

DOI: 10.1016/j.microrel.2007.01.047

Google Scholar

[11] T. Baron, A. Fernandes, J.F. Damlencourt, B. De Salvo, F. Martin, F. Mazen, S. Haukka, Growth of Si nanocrystals on alumina and integration in memory devices, Appl. Phys. Lett. 82 (2003) 4151-4153.

DOI: 10.1063/1.1577409

Google Scholar

[12] A.N. Mikhaylov, A.I. Belov, A.B. Kostyuk, I. Yu. Zhavoronkov, D.S. Korolev, A.V. Nezhdanov, A.V. Ershov, D.V. Guseinov, T.A. Gracheva, N.D. Malygin, E.S. Demidov, D.I. Tetelbaum, Peculiarities of the formation and properties of light-emitting structures based on ion-synthesized silicon nanocrystals in SiO2 and Al2O3 matrices, Physics of the Solid State (St. Petersburg, Russia) 54 (2012).

DOI: 10.1134/s1063783412020175

Google Scholar

[13] S. Yerci, U. Serincan, I. Dogan, S. Tokay, M. Genisel, A. Aydinli, R. Turan, Formation of silicon nanocrystals in sapphire by ion implantation and the origin of visible photoluminescence, J. Appl. Phys. 100 (2006) 074301 (5 pages).

DOI: 10.1063/1.2355543

Google Scholar

[14] S. Núñez-Sánchez, R. Serna, J. García López, A.K. Petford-Long, M. Tanase, B. Kabius, Tuning the Er3+ sensitization by Si nanoparticles in nanostructured as-grown Al2O3 films, J. Appl. Phys. 105 (2009) 013118 (5 pages).

DOI: 10.1063/1.3065520

Google Scholar

[15] L. Bi, J.Y. Feng, Nanocrystal and interface defects related photoluminescence in silicon-rich Al2O3 films, J. Lumin. 121 (2006) 95-101.

DOI: 10.1016/j.jlumin.2005.10.007

Google Scholar

[16] http: /www. horiba. com/scientific/products/ellipsometers/software.

Google Scholar

[17] N. Korsunska, T. Stara, V. Strelchuk, O. Kolomys, V. Kladko, A. Kuchuk, B. Romanyuk, O. Oberemok, J. Jedrzejewski, P. Marie, L. Khomenkova, I. Balberg, Si-rich Al2O3 films grown by RF magnetron sputtering: structural and photoluminescence properties versus annealing treatment, Nanoscale Research Letters, 2013, accepted for publication, ID: 1955309885820275.

DOI: 10.1186/1556-276x-8-273

Google Scholar

[18] B.J. Jones, R.C. Barklie, Elecron paramagnetic resonance evolution of defects at the (100)Si/Al2O3 interface, J. Phys. D.: Appl. Phys. 38 (2005) 1178-1181.

DOI: 10.1088/0022-3727/38/8/013

Google Scholar

[19] N. Korsunska, T. Stara, V. Strelchuk, O. Kolomys, V. Kladko, A. Kuchuk, L. Khomenkova, J. Jedrzejewski, I. Balberg, The influence of annealing on structural and photoluminescence properties of silicon-rich Al2O3 films prepared by co-sputtering. Physica E, 51 (2013).

DOI: 10.1016/j.physe.2012.12.002

Google Scholar

[20] S. Yin, E. Xie, C. Zhang, Z. Wang, L. Zhou, I.Z. Ma, C.F. Yao, H. Zang, C.B. Liu, Y.B. Sheng, J. Gou, Photoluminescence character of Xe ion irradiated sapphire, Nucl. Instr. Methods B 12-13 (2008) 2998-3001.

DOI: 10.1016/j.nimb.2008.03.210

Google Scholar

[21] Y. Song, C.H. Zhang, Z.G. Wang, Y.M. Sun, J.L. Duan, Z.M. Zhao, Photoluminescence of inert-gas ion implanted sapphire after 230-MeV Pb ion irradiation, Nucl. Instr. Methods B 245 (2006) 210-213.

DOI: 10.1016/j.nimb.2005.11.134

Google Scholar

[22] I. Dogan, I. Yildiz, R. Turan, PL and XPS depth profiling of Si/Al2O3 co-sputtered films and evidence of the formation of silicon nanocrystals, Physica E 41 (2009) 976-981.

DOI: 10.1016/j.physe.2008.08.036

Google Scholar