EIS Study of Bulk Al-SiC Nanocomposite Prepared by Mechanical Alloying and the Hot Press Method

Article Preview

Abstract:

Metal matrix composites (MMCs) are engineering materials in which a hard ceramic component is dispersed in a ductile metal matrix in order to obtain characteristics such as hardness and corrosion resistance. Corrosion resistance is one of the important properties of nanocomposites; however, the corrosion mechanism of the Al- SiC nanocomposite has not yet been determined. .In this study, bulk Al-5% SiC nanocomposite was prepared using mechanical alloying and the hot press method. Corrosion behavior was then investigated using EIS techniques such as Nyquist and the Bod diagram. A larger charge transfer resistance was found for the Al- SiC nanocomposite by the EIS diagrams, confirming its corrosion resistance in a 3.5wt% NaCl solution.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 83-86)

Pages:

1297-1305

Citation:

Online since:

December 2009

Export:

Price:

[1] B. Prabhu, C. Suryanarayana, L. An, R. Vaidyanathan, synthesis and characterization of high volume fraction Al-Al2O3 nanocomposite powders by high-energy milling, Materials Science and Engineering A. Vol. 425 (2006) 192-200.

DOI: 10.1016/j.msea.2006.03.066

Google Scholar

[2] J. W. Kaczmar, K. Pietrzak and W. W osiski, The production and application of metal matrix composite materials, Journal of Materials Processing Technology, Vol. 106 (2000) 58-67.

DOI: 10.1016/s0924-0136(00)00639-7

Google Scholar

[3] J. Zhang, L. Wang, L. Shi, W. Jiang and L. Chen W.J.J. Wakelkamp, Rapid fabrication of Ti3SiC2-SiC nanocomposite using the spark plasma sintering-reactive synthesis (SPS-RS) method, Scripta Materialia, Vol. 56 (2007) 241-244.

DOI: 10.1016/j.scriptamat.2006.09.029

Google Scholar

[4] J. Zhang, T. Wu, L. Wang, W. Jiang and L. Chen, Microstructure and properties of Ti3SiC2/SiC nanocomposites fabricated by spark plasma sintering, Composites Science and Technology, Vol. 68 (2008) 499-505.

DOI: 10.1016/j.compscitech.2007.06.006

Google Scholar

[5] E.M. Ruiz-Navas J.B. Fogagnolo, F. Velasco, J.M. Ruiz-Prieto, L. Froyen, One step production of aluminium matrix composite powders by mechanical alloying, Composites: Part A, Vol. 37 (2006) 2114-2120.

DOI: 10.1016/j.compositesa.2005.11.016

Google Scholar

[6] N. Chawla, J. W. Jones, C. Andres and J. E. Allison, Effect of SiC volume fraction and particle size on the fatigue resistance of a 2080 Al/SiC p composite, Metallurgical and Materials Transactions A, Vol. 29 (1998) 1543-(1940).

DOI: 10.1007/s11661-998-0325-5

Google Scholar

[7] A. Bhaduri a, V. Gopinathan, P. Ramakrishnan, A.P. Miodownik, Processing and properties of SiC particulate reinforced A1-6. 2Zn-2. 5Mg-I. 7Cu alloy (7010) matrix composites prepared by mechanical alloying, Materials Science and Engineering A, Vol221 (1996).

DOI: 10.1016/s0921-5093(96)10484-6

Google Scholar

[8] I.A. Ibrahim, F.A. Mohammad and E.J. Lavernia, Particulate reinforced metal matrix composites - a review. J. Mater. Sci. Vol. 26 (1991)1137-1156.

DOI: 10.1007/bf00544448

Google Scholar

[9] J. Lee, J. Byun, C. Oh, H. Seok and H. Lee, Effect of various processing methods on the interfacial reactions in SiCp/2024 Al composites. J. Acta Metall, Vol. 32 (1997) 5303-5315.

DOI: 10.1016/s1359-6454(97)84851-3

Google Scholar

[10] D.L. Zhang, Processing of advanced materials using high-energy mechanical milling. Progr. Mater. Sci. Vol. 49 (2004) 537-560.

Google Scholar

[11] Z. Razavi Hesabi, A. Simchi, S.M. Seyed Reihani, structural evolution during mechanical milling of nanometric and micrometric Al2O3 reinforced Al matrix composites, Materials Science and Engineering A. Vol. 428 (2006) 159-168.

DOI: 10.1016/j.msea.2006.04.116

Google Scholar

[12] K. D. Woo, and D. L. Zhang, Fabrication of Al-7wt%Si-0. 4wt%Mg/SiC nanocomposite powders and bulk nanocomposites by high energy ball milling and powder metallurgy, Current Applied Physics, Vol. 4 (2004) 175-178.

DOI: 10.1016/j.cap.2003.11.002

Google Scholar

[13] M.A. Gonzalez-nunez, C.A. Numez-Lopez, P. Skeldon, G.E. Thompson, H. Karimzadeh, P. Lyon, T.E. Wilks. A non-chromate conversion coating for magnesium alloys and magnesium based metal matrix composites. Corros. Sci., 37(11) (1995) 1763-1772.

DOI: 10.1016/0010-938x(95)00078-x

Google Scholar

[14] T. G. Durai, Karabi Das and S. Das, Effect of mechanical milling on the corrosion behavior of Al-Zn/Al2O3 composite in NaCl solution. Journal of Materials Science, Vol. 42 (2007) 82098214.

DOI: 10.1007/s10853-007-1730-7

Google Scholar

[15] S. Das, Y.L. Saraswathi, D.P. Mondal. Erosive-corrosive wear of aluminum alloy composites: Influence of slurry composition and speed. Wear, Vol. 261 (2006) 180-190.

DOI: 10.1016/j.wear.2005.09.013

Google Scholar

[16] M.A. R, J.M. Sasaki, and C. M. R. Remedios, Characterization by X-Ray Diffraction of Mechanically Alloyed Tripotassium Sodium Sulfate. Materials Research, Vol. 9 (2006) 243246.

Google Scholar