Synthesis of Monodispersed Fe3O4 Magnetite Nanoparticles by Ethylene Glycol Solvothermal Method

Article Preview

Abstract:

Monodispersed Fe3O4 magnetite nanoparticles were successfully synthesized via a simple solvothermal method, in which Fe(NO3)3•9H2O was used as the starting materials, KOH as the mineralizer, and ethylene glycol (en) as the solvent. X-ray diffraction (XRD) and selected area electron diffraction (SAED) were employed to characterize the phase composition, transmission electron microscope (TEM) to observe the morphology and the particle size, and physical property measurement system (PPMS) to investigate the magnetic property of the synthesized powders, respectively. The synthesized Fe3O4 magnetite nanoparticles are of 50-100nm in size, and of notable ferromagnetic property. The saturation magnetization, remanent magnetization, and coercive field are 68.8emu•g-1, 12.9emu•g-1, 138.5Oe, respectively. Based on the experimental resuts, the formation mechanism and the well monodispersed reason of the solvothersized Fe3O4 nanoparticles are discussed.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 634-638)

Pages:

2276-2279

Citation:

Online since:

January 2013

Export:

Price:

[1] V.F. Puntes, K.M. Krishnan, Appl. Phys. Lett. Vol. 78 (2001), p.2187–9.

Google Scholar

[2] R.M. Cornell, U. Schwertmann, The Iron Oxides: Structure, Properties, Reactions, Occurrence and Uses, p.28–9. VCH, NewYork, (1996).

Google Scholar

[3] T. Yang, C. Shen, Z. Li, H. Zhang, et al. J. Phys. Chem. B. Vol. 109 (2005), p.23233–6.

Google Scholar

[4] D. Ma, J. Guan, F. Normandia, S. Denommee, et al. Chem. Mater. Vol. 18 (2006), p.1920–7.

Google Scholar

[5] M. Arruebo, M. Galan, N. Navascues, et al. Chem. Mater. Vol. 18 (2006), p.1911–9.

Google Scholar

[6] D. Beydoun, R. Amal, G.K. -C. Low, et al. J. Phys. Chem. B. Vol. 104 (2000), p.4387–96.

Google Scholar

[7] K. Raj and R. Moskowitz, J. Magn. Magn. Mater. Vol. 85 (1990), p.233–45.

Google Scholar

[8] L. Fu, V.P. Dravid, and D.L. Johnson, Appl. Surf. Sci. Vol. 181 (2001), p.173–8.

Google Scholar

[9] Y.D. Li, H.W. Liao, Y.T. Qian, Mater. Res. Bull. Vol. 33 (1998), p.841–4.

Google Scholar

[10] R.S. Sapieszko, E. Matijevic, J. Colloid Interface Sci. Vol. 74 (1980), p.405–22.

Google Scholar

[11] R. Vijayakumar, Y. Koltypin, I. Felner, et al. Mater. Sci. Eng. Vol. A286 (2000), p.101–5.

Google Scholar

[12] T. Fried, G. Shemer, G. Markovich, Adv. Mater. Vol. 13 (2001), p.1158–61.

Google Scholar

[13] J. Rockenberger, E.C. Scher, P.A. Alivisatos, J. Am. Chem. Soc. Vol. 121 (1999), p.11595–6.

Google Scholar

[14] T. Hyeon, S.S. Lee, J. Park, et al. J. Am. Chem. Soc. Vol. 123 (2001), p.12798–801.

Google Scholar

[15] S.H. Sun, H. Zeng, J. Am. Chem. Soc. Vol. 124 (2002), p.8204–5.

Google Scholar

[16] S. Deng, X.L. Li, Q. Peng, et al. Angew. Chem. Int. Ed. Vol. 44 (2005), pp.2782-2785.

Google Scholar

[17] S. M. Jin, L.S. Yuan, Y. Zhou, et al. Mater. Res. Bull. Vol. 41 (2006), pp.2130-2136.

Google Scholar

[18] L.J. Zhao, L.F. Duan, Eur. J. Inorg. Chem. (2010), pp.5635-5639.

Google Scholar

[19] Q. Sun, Z. Ren, R.M. Wang, et al. J. Nanopart Res. Vol. 13 (2011), pp.213-220.

Google Scholar

[20] Q.Q. Wang, G. Xu, G.R. Han, J. Solid State Chem. Vol. 178 (2005), pp.2680-2685.

Google Scholar

[21] J. Wang, J.J. Sun, Q. Sun, Q.W. Chen, Mater. Res. Bull. Vol. 38 (2003), pp.1113-1118.

Google Scholar

[22] F.H. Chen, Q. Gao, G.Y. Hong, J.Z. Ni, J. Magn. Magn. Mater. Vol. 320 (2008), pp.1775-1780.

Google Scholar

[23] D.B. Wang, C.X. Song, Y.H. Zhao, et al. J. Phys. Chem. C Vol. 112 (2008), pp.12710-12715.

Google Scholar