Hybrid Welding of AA5754-H111 Alloy Using a Fiber Laser

Article Preview

Abstract:

The new generation of high power fiber lasers presents several benefits for industrial application. Nevertheless, due to the small spot size of the laser, the fiber laser has difficulties in some welding applications. These shortcomings can be overcome by laser-arc hybrid welding technique such as laser-gas metal arc welding or laser-gas tungsten arc welding. In this work, a high power fiber laser was coupled to an arc welder and the AA5754-H111 magnesium aluminum alloy was welded. The trials were carried out using laser leading configuration. A new generation of high power fiber laser was used. The experimental trials included process parameters such as laser power, welding speed and arc current. Microstructure, microhardness and weld appearance were analyzed. The experimental results showed that laser leading configuration produces full penetration for some welding parameters. The obtained results worth a larger investigation based on the experimental design technique.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

193-198

Citation:

Online since:

December 2012

Export:

Price:

[1] Chen YB, Lei ZL, Li LQ, Wu L. Experimental study on welding characteristics of CO2 laser TIG hybrid welding process. Science and Technology of Welding & Joining 2006; 11(4): 403-11.

DOI: 10.1179/174329306x129535

Google Scholar

[2] El Rayes M, Walz C, Sepold G. The Influence of Various Hybrid Welding Parameters on Bead Geometry. Welding Journal. 2004; 83(5): 147s-153s.

Google Scholar

[3] L. Quintino, A. Costa, R. Miranda, D. Yapp b, V. Kumar, C.J. Kong. Welding with high power fiber lasers – A preliminary study. Materials and Design 28 (2007) 1231–1237.

DOI: 10.1016/j.matdes.2006.01.009

Google Scholar

[4] V. M. Yermachenkoa, A. P. Kuznetsova, V. N. Petrovskiya, N. M. Prokopovaa, A. P. Strel'tsovb, and S. A. Uspenskiya. Specific features of the welding of metals by radiation of high power fiber laser. Laser Physics, 2011, Vol. 21, No. 8, p.1530.

Google Scholar

[5] Shiner B. High-power fiber lasers gain market share. Industrial Laser Solution 2006; 21(2).

Google Scholar

[6] Cao X, Wanjara P, Huang J, Munro C, Nolting A. Hybrid fiber laser – Arc welding of thick section high strength low alloy steel. Materials and Design 2011; 32: 3399-3413.

DOI: 10.1016/j.matdes.2011.02.002

Google Scholar

[7] Quintino L, Costa A, Miranda R, Yapp D, Kumar V, Kong CJ. Welding with high power fiber lasers-A preliminary study. Materials and Design 2007; 28: 1231-1237.

DOI: 10.1016/j.matdes.2006.01.009

Google Scholar

[8] Campanelli S. L., Casalino G., Contuzzi N., Angelastro A., Ludovico A. D. Preliminary Investigation on Hybrid Welding of Selective Laser Molten Parts. 30th International Congress on Applications of Lasers and Electro-Optics, ICALEO 2011 , pp.652-660.

DOI: 10.2351/1.5062306

Google Scholar

[9] Paleocrassas A.G., Tu J.F. Inherent instability investigation for low speed laser welding of aluminum using a single-mode fiber laser. Volume: 210, Issue: 10, July 1, 2010, pp.1411-1418.

DOI: 10.1016/j.jmatprotec.2010.04.002

Google Scholar

[10] Steen WM. Arc augmented laser processing of materials, Journal of Applied Physics. 1980; 11(51): pp.5636-5641.

DOI: 10.1063/1.327560

Google Scholar

[11] Campanelli, S. L., Casalino, G., Ludovico, A.D., Contuzzi, N., Angelastro, A. Study of a fiber laser assisted friction stir welding process. Proceedings of SPIE - The International Society for Optical Engineering 8239 , art. no. 823913.

DOI: 10.1117/12.912622

Google Scholar

[12] Casalino, G., Lobifaro, F. Process parameters effects on Al-mg alloys MIG-laser CO2 welding. ICALEO 2005 - Congress Proceedings , pp.1062-1068.

DOI: 10.2351/1.5060609

Google Scholar

[13] Casalino, G., Ludovico, A., Chieco, G. Characterisation of al-mg alloys MIG-Laser CO2 combined welding. ICALEO 2005 - Congress Proceedings, 190-195.

DOI: 10.2351/1.5060610

Google Scholar

[14] Cui Li, Kutusna Muneharua, Simizu Taka, Horio Kouji. Fiber laser-GMA hybrid welding of commercially pure titanium. Materials and Design 30 (2009) 109–114.

DOI: 10.1016/j.matdes.2008.04.043

Google Scholar

[15] X. Cao, P. Wanjara, J. Huang, C. Munro, A. Nolting . Hybrid fiber laser – Arc welding of thick section high strength low alloy steel. Materials and Design 32 (2011) 3399–3413.

DOI: 10.1016/j.matdes.2011.02.002

Google Scholar

[16] Kutsuna M, Yan Q. Study on porosity formation in laser welds in aluminium alloys (Report 1): Effects of hydrogen and alloying elements. Welding International 1998; 12(12): 937-949.

DOI: 10.1080/09507119809448539

Google Scholar

[17] Liming L, Gang S, Guoli L, Jifeng W. Pore formation during hybrid laser-tungsten inert gas arc welding of magnesium alloy AZ31B-mechanism and remedy, Materials Science and Engineering. 2005; 390: 76-80.

DOI: 10.1016/j.msea.2004.07.067

Google Scholar

[18] Katayama S., Naito Y., Uchiumi S., Mizutani M. Physical phenomena and porosity prevention mechanism in laser-arc hybrid welding. Transaction of JWRI, 35 (1), 2006, 13-18.

DOI: 10.1109/cleoe.2005.1568437

Google Scholar

[19] Pastor M., Zhao H., Martukanitz R.P. Debroy T. Porosity, Underfill and magnesium loss during Continuous wave Nd: YAG Laser welding of thin plates of aluminium Alloys 5182 and 5754. Weld. Res. Suppl. June 1999; 207-216s.

Google Scholar

[20] Haboudou A, Peyre P, Vannes AB, Peix P. Reduction of porosity content generated during Nd: YAG laser welding of A356 and AA5083 aluminum alloys. Mat. Sci. and Eng. 2003; 363: 40-52.

DOI: 10.1016/s0921-5093(03)00637-3

Google Scholar

[21] Casalino G. Statistical Analysis of MIG-laser CO2 hybrid welding of an Al-Mg alloy. Journal of Materials Processing Technology 2007; 191(1-3): 106-110.

DOI: 10.1016/j.jmatprotec.2007.03.065

Google Scholar