Formation of Cylindrical Nanoholes in Heavily Doped P-Type Si(100) Substrate via Pt Nanoparticles-Assisted Chemical Etching

Article Preview

Abstract:

Metal assisted chemical etching of heavily doped p-type Si(100) wafer was investigated in a solution containing HF and hydrogen peroxide using Pt nanoparticles as catalyst. The Pt nanoparticles were formed on Si(100) substrate by magnetron sputtering and post-deposition annealing. In a solution containing low concentration HF, formation of cylindrical nanoholes are unstable in the early stage of the etching process. After that, nanoholes with diameters ranging from 40 to 50 nm are stably formed in silicon substrate and the calculated growing rate is 60 nm/min. Instead, in a solution containing high concentration HF, cylindrical nanoholes with a diameter of about 10 nm can be stably produced in silicon substrate all the time and the growing rate is increased to as fast as 160 nm/min. In both cases, no Pt nanoparticles are observed at the bottom of the nanoholes. Finally, the underlying mechanisms of the aforementioned phenomena are also discussed.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 535-537)

Pages:

362-367

Citation:

Online since:

June 2012

Export:

Price:

[1] A. Zhang, S. F. You, C. Soci, Y. S. Liu, D. L. Wang and Y. H. Lo: Appl. Phys. Lett., Vol. 93 (2008) No. 12, p.1.

Google Scholar

[2] K. Q. Peng, X. Wang, X. L. Wu and S. T. Lee: Appl. Phys. Lett., Vol. 95 (2009) No. 14, p.1.

Google Scholar

[3] K. Q. Peng, X. Wang, L. Li, X. L. Wu and S. T. Lee: J. AM. CHEM. SOC., Vol. 132 (2010) No. 20, p.6872.

Google Scholar

[4] K. Q. Peng and S. T. Lee: Adv. Mater., Vol. 23 (2011) No. 2, p.198.

Google Scholar

[5] C. K. Chan, H. L. Peng, G. Liu, K. McIlwrath, X. F. Zhang, R. A. Huggins and Y. Cui: Nat. Nanotechnol., Vol. 3 (2008) No. 1, p.31.

Google Scholar

[6] S. W. Chang, J. Oh, S. T. Boles and C. V. Thompson: Appl. Phys. Lett., Vol. 96 (2010) No. 15, p.1.

Google Scholar

[7] Y. Cui, Q. Q. Wei, H. K. Park. and C. M. Lieber: Science, Vol. 293 (2001) No.5533, p.1289.

Google Scholar

[8] F. Patolsky, G. Zheng and C. Lieber: Nat. Protoc., Vol. 1 (2006) No. 4, p.1711.

Google Scholar

[9] X. Li and P.W. Bohn: Appl. Phys. Lett., Vol. 77 (2000) No. 16, p.2572.

Google Scholar

[10] Z. P. Huang, N. Geyer, P. Werner, J. de Boor and U. Gösele: Adv. Mater., Vol. 23 (2011) No. 2, p.285.

Google Scholar

[11] K. Tsujino and M. Matsumura: Adv. Mater., 2005, Vol. 17 (2005) No. 8, p.1045.

Google Scholar

[12] L. B. McCusker, F. Liebau and G. Engelhardt: J. Appl. Phys., Vol. 94 (2003) No. 12, p.7801.

Google Scholar

[13] C. Chartier, S. Bastide and C. Lévy-Clément: Electrochimica Acta., Vol. 53 (2008) No.17, p.5509.

DOI: 10.1016/j.electacta.2008.03.009

Google Scholar

[14] A. I. Hochbaum, D. Gargas, Y. J. Hwang and P. D. Yang: Nano Lett., Vol. 9 (2009) No.10, p.3550.

Google Scholar

[15] V. Lehmann: Electrochemistry of Silicon (Wiley-VCH, Germany 2002), p.1.

Google Scholar

[16] X. Zhang: J. Electrochem. Soc., Vol. 151 (2004) No. 1, p.69.

Google Scholar

[17] Y. M. Yang, P. K. Chu, Z. W. Wu, S. H. Pu, T. F. Hung, K. F. Huo, G. X. Qian, W. J. Zhang and X. L. Wu: Appl. Surf. Sci., Vol. 254 (2008) No. 10, p.3061.

DOI: 10.1016/j.apsusc.2008.03.008

Google Scholar