Optimization of Inlet Temperature of Methanol Synthesis Reactor of LURGI Type

Article Preview

Abstract:

This paper presents an optimization study of inlet temperature of methanol synthesis reactor of LURGI type by using commercial simulator Aspen Plus and Aspen Energy Analyzer. The optimization routine is coupled to a steady-state model of the methanol synthesis reactor. By investigating the influences on methanol production and heat exchanger network synthesis, the inlet temperature of the reactor is optimized. when the inlet temperature is 230°C, the economic benefits of the methanol plant is maximized which could be increased by $ 44883.28/ year.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 443-444)

Pages:

671-677

Citation:

Online since:

January 2012

Export:

Price:

[1] R. S. Dixit, N. Grant. (1996). Dynamic operation of butadiene dimerization reactor undergoing catalyst deactivation. The Canadian Journal of Chemical Engineering. 74, 651-659.

DOI: 10.1002/cjce.5450740515

Google Scholar

[2] A. Jahanmiri, R. Eslamloueyan. (2002). Optimal temperature profile in methanol synthesis reactor Chemical Engineering Communications. 189, 713-741.

DOI: 10.1080/00986440212475

Google Scholar

[3] M. Shahrokhi, G. R. Baghmisheh. (2005). Modeling, simulation and control of a methanol synthesis fixed-bed reactor. Chemical Engineering Science. 60, 4275-4286.

DOI: 10.1016/j.ces.2004.12.051

Google Scholar

[4] G. Zahedi, A. Elkamel, A. Lohi, A. JahanmiriM. R. Rahimpor. (2005).

Google Scholar

[5] M. R. Rahimpour, M. Lotfinejad. (2008). A comparison of co-current and counter-current modes of operation for a dual-type industrial methanol reactor. Chemical Engineering and Processing: Process Intensification. 47, 1819-1830.

DOI: 10.1016/j.cep.2007.10.011

Google Scholar

[6] M. R. Rahimpour. (2008). A two-stage catalyst bed concept for conversion of carbon dioxide into methanol. Fuel Processing Technology. 89, 556-566.

DOI: 10.1016/j.fuproc.2007.10.011

Google Scholar

[7] S. A. Velardi, A. A. Barresi. (2002). Methanol synthesis in a forced unsteady-state reactor network. Chemical Engineering Science. 57, 2995-3004.

DOI: 10.1016/s0009-2509(02)00181-1

Google Scholar

[8] A. Y. Rozovskii, G. I. Lin, Fundamentals of Methanol Synthesis and Decomposition, in Topics in Catalysis. 2003, Springer Science & Business Media B.V. pp.137-150.

Google Scholar

[9] J. Wu, M. Saito, M. TakeuchiT. Watanabe. (2001). The stability of Cu/ZnO-based catalysts in methanol synthesis from a CO2-rich feed and from a CO-rich feed. Applied Catalysis A: General. 218, 235-240.

DOI: 10.1016/s0926-860x(01)00650-0

Google Scholar

[10] M. Setinc, J. Levec. (1999). On the kinetics of liquid-phase methanol synthesis over commercial Cu/ZnO/Al2O3 catalyst. Chemical Engineering Science. 54, 3577-3586.

DOI: 10.1016/s0009-2509(98)00513-2

Google Scholar

[11] K. M. V. Bussche, G. F. Froment. (1996). A Steady-State Kinetic Model for Methanol Synthesis and the Water Gas Shift Reaction on a Commercial Cu/ZnO/Al2O3Catalyst. Journal of Catalysis. 161, 1-10.

DOI: 10.1006/jcat.1996.0156

Google Scholar

[12] M. Setinc, J. Levec. (2001). Dynamics of a mixed slurry reactor for the three-phase methanol synthesis. Chemical Engineering Science. 56, 6081-6087.

DOI: 10.1016/s0009-2509(01)00212-3

Google Scholar

[13] G. H. Graaf, E. J. StamhuisA. A. C. M. Beenackers. (1988). Kinetics of low-pressure methanol synthesis. Chemical Engineering Science. 43, 3185-3195.

DOI: 10.1016/0009-2509(88)85127-3

Google Scholar

[14] K. Klier, V. Chatikavanij, R. G. HermanG. W. Simmons. (1982). Catalytic synthesis of methanol from CO/H2: IV. The effects of carbon dioxide. Journal of Catalysis. 74, 343-360.

DOI: 10.1016/0021-9517(82)90040-9

Google Scholar

[15] X. Feng. (2009). Principles and technologies in chemical energy saving. Chemical industry press, Beijing.

Google Scholar

[16] Richard Turton, Richard C. Bailie, Wallace B. WhitingJ. A. Shaeiwitz. (2009). Synthesis and design of chemical processes. 3rd ed. New Jersey: Prentice Hall.

DOI: 10.1002/cite.330711124

Google Scholar