IT-Infrastructure for an Integrated Visual Analysis of Distributed Heterogeneous Simulations

Article Preview

Abstract:

Computational simulations are used for the optimization of production processes in order to significantly reduce the need for costly experimental optimization approaches. Yet individual simulations can rarely describe more than a single production step. Hence, a set of simulations has to be used to simulate a contiguous representation of a complete production process. Besides, sim­ulated results have to be analyzed by domain experts to gather insight from the performed computa­tions. In this paper, an IT-infrastructure is proposed that aims at a rather non-intrusive way of inter­connecting simulations and domain expert’s knowledge to facilitate the collaborative setup, execu­tion and analysis of distributed simulation chains.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 328-330)

Pages:

1940-1946

Citation:

Online since:

September 2011

Export:

Price:

[1] T. Belytschko and T. Black, Elastic Crack Growth in Finite Elements with Minimal Remeshing. International Journal for Numerical Methods in Engineering, 45 (5) (1999), p.601–620.

DOI: 10.1002/(sici)1097-0207(19990620)45:5<601::aid-nme598>3.0.co;2-s

Google Scholar

[2] D. Chappell, Enterprise Service Bus: Theory in Practice, O'Reilly Media (2004).

Google Scholar

[3] M. Ehrig: FOAM - framework for ontology alignment and mapping. Proceedings of the Workshop on Integrating Ontologies, vol. 156 (2005), p.72–76.

Google Scholar

[4] D. Engmann, S. Maßmann, Instance Matching with COMA++. BTW Workshops (2007), pp.28-37.

Google Scholar

[5] J. Euzenat and P. Shvaiko: Ontology matching. 1. ed. Berlin; New York: Springer (2007).

Google Scholar

[6] I. Foster: Globus Toolkit Version 4: Software for Service-Oriented Systems. IFIP International Conference on Network and Parallel Computing, Springer-Verlag LNCS 3779 (2006), pp.2-13.

Google Scholar

[7] M. Gagnon: Ontology-based integration of data sources. Information Fusion, 10th International Conference on Information Fusion, (2007), pp.1-8.

DOI: 10.1109/icif.2007.4408086

Google Scholar

[8] F. Giunchiglia, P. Shvaiko and M. Yatskevich: Discovering missing background knowledge in ontology matching. Proceeding of the 2006 conference on ECAI (2006), pp.382-386, IOS Press.

Google Scholar

[9] A. Halevy, A. Rajaraman, and J. Ordille: Data integration: the teenage years. Proceedings of the 32nd international conference on Very large data bases (VLDB) (2006), pp.9-16.

Google Scholar

[10] T. Haupt: Cyberinfrastructure for Integrated Computational Material Engineering. Proceedings of Magnesium Technology (2010).

Google Scholar

[11] M. Henning: The rise and fall of CORBA. Communications of the ACM, Vol. 51 No. 8 (2008), pp.52-57.

Google Scholar

[12] T. K. Heok and D. Daman: A Review on Level of Detail. IEEE Computer Graphics, Imaging and Visualization '04 (2004), pp.70-75.

DOI: 10.1109/cgiv.2004.1323963

Google Scholar

[13] W. Kim, J. Seo: Classifying schematic and data heterogeneity in multidatabase systems. Computer, vol. 24, no. 12 (1991), pp.12-18.

DOI: 10.1109/2.116884

Google Scholar

[14] Kitware Inc: The ParaView guide, ISBN 1-930934-21-4, (2008).

Google Scholar

[15] Kitware, Inc.: The Visualization Toolkit, ISBN 978-1930934-12-2, (2006).

Google Scholar

[16] U. Lang: Process Chain Integration for Simulation and Data Processing. Space Grid Workshop, Frascati, Italy (2003).

Google Scholar

[17] G. Laschet, J. Neises, I. Steinbach: Micro- Macrosimulation of casting processes. 4iéme écoled' été de Modelisation numerique en thermique, vol. C8 (1998), pp.1-42.

Google Scholar

[18] G. Laschet, M. Apel: Thermo-elastic homogenization of 3-D steel microstructure simulated by phase-field method. Steel Resarch int., vol. 81, n. 8 (2010), pp.637-643.

DOI: 10.1002/srin.201000077

Google Scholar

[19] U. Leser: Informationsintegration: Architekturen und Methoden zur Integration verteilter und heterogener Datenquellen, Dpunkt-Verl., Heidelberg, 1st ed., (2008).

DOI: 10.1007/s11576-007-0038-1

Google Scholar

[20] T. Meisen, D. Schilberg, K. Henning: Planner Based Data Integration for Simulation Chains in Virtual Production. Proceedings of International Conference on Science, Technology and Innovation for Sustainable Well-Being, Thailand, Khon Kaen, (2009).

Google Scholar

[21] Y. Natis: Service-Oriented Architecture Scenario. Gartner Research Note AB-19-6751 (2003).

Google Scholar

[22] E. Rossiter, O. Mokrov: Integration des Simulationspaketes SimWeld in FEM Analyseprogramme zur Modellierung von Schweißprozessen, Sysweld Forum (2007).

Google Scholar

[23] G. Schmitz and U. Prahl: Toward a virtual platform for materials processing. JOM Journal of the Minerals, Metals and Materials Society, vol. 61 (2009), pp.19-23.

DOI: 10.1007/s11837-009-0064-0

Google Scholar

[24] G. Schopfer, A. Yang L. v. Wedel and W. Marquardt: CHEOPS: a tool-integration platform for chemical process modelling and simulation. International Journal on Software Tools for Technology Transfer, 6(3) (2004), pp.186-202.

DOI: 10.1007/s10009-004-0157-6

Google Scholar

[25] P. Shvaiko and J. Euzenat: A Survey of Schema-Based Matching Approaches. Journal on Data Semantics IV, vol. 3730, Springer Berlin / Heidelberg (2005), pp.146-171.

DOI: 10.1007/11603412_5

Google Scholar

[26] D. Thain, T. Tannenbaum and M. Livny: Distributed Computing in Practice: The Condor Experience. Concurrency and Computation: Practice and Experience, Vol. 17, No. 2-4 (2008), pages 323-356.

DOI: 10.1002/cpe.938

Google Scholar

[27] S. Valette, J. M. Chassery: Approximated Centroidal Voronoi Diagrams for Uniform Polygonal Mesh Coarsening. Computer Graphics Forum, (2004).

DOI: 10.1111/j.1467-8659.2004.00769.x

Google Scholar

[28] T. Zacharia et al.: Modeling of Fundamental Phenomena in Welds. Modelling and Simulation in Materials Science and Engineering, 3 (1995), p.265–288.

Google Scholar