Creep Rupture Strength of Re and Ru Containing Experimental Nickel-Base Superalloys

Article Preview

Abstract:

The influence of Re and Ru on creep rupture strength has been investigated using a new in-house designed alloy-series comprising 9 experimental nickel-base superalloys with stepwise increased Re and Ru additions. The presented creep data reveals a significant increase in creep rupture strength by additions of Re. For additions of Ru an increase of creep rupture strength can only be found for low Re contents. The present article, which is part of an extensive and systematic investigation on Re and Ru influences, shows, that an improved creep resistance by an influence of Re and Ru on the γ’-solvus temperature is rather improbable. Likewise, the influence of Re and Ru on liquidus temperature is not expected to play an important role. However, the creep rupture strength is suggested to be highly modified by γ/γ’-microstructure changes.

You have full access to the following eBook

Info:

Periodical:

Pages:

339-344

Citation:

Online since:

July 2011

Export:

[1] Reed, R. C., The Superallos (Vol. 1, 2006), Cambridge University Press.

Google Scholar

[2] Erickson, G. L., Superalloys 1996, TMS, pp.35-44.

Google Scholar

[3] Darolia, R., Lahrman, D.F., Field, R.D., Superalloys 1988, TMS, pp.255-264.

Google Scholar

[4] Rae, C. M. F., Karunaratne, M.S.A., Small, et al. Superalloys 2000, TMS, pp.767-776.

Google Scholar

[5] Hobbs, R. A., Zhang, L., Rae, C.M.F., Tin, S., Metall. Trans. A, 39 (2008), pp.1014-1025.

Google Scholar

[6] Sato, A., Harada, H., Yokokawa, T., et al., Scripta Materialia, 54 (2206), pp.679-1684.

Google Scholar

[7] Volek, A., Singer, R.F., Superalloys 2004, TMS, pp.713-718.

Google Scholar

[8] Volek, A., Singer, R.F., Buergel, R., et al., Metall. Mater. Trans. A, 2006, vol. 37A, p.405–10.

Google Scholar

[9] O'Hara, K., Walston, S., Ross, E., Darolia, R., United States Patent Application Patent No. 5. 482. 789, Application No. 176. 613 (1996).

Google Scholar

[10] Rae, C. M. F., Reed, R. C:. (2001), Acta Materialia, 49, pp.4113-4125.

Google Scholar

[11] Hobbs, R. A., Zhang, L., Rae, C.M.F., Tin, S., Materials Science and Engineering A, 489 (2008), pp.65-76.

Google Scholar

[12] Heckl, A., Rettig, R., Singer, R.F., Metallurgical and Materials Transactions A, 41A (2010), pp.202-211.

Google Scholar

[13] Heckl, A., Rettig, R., Cenanovic, S., Journal of Crystal Growth, 312 (2010), pp.2137-2144.

Google Scholar

[14] Franke, M. M., Hilbinger, R.M., Heckl, A., Singer, R.F. International Foundry Research, 62 (2010) No. 2.

Google Scholar

[15] Heckl, A., Neumeier, S., Singer, R.F. (2010), submitted to Materials Science and Engineering A, in press.

Google Scholar

[16] Rettig, R., Heckl, A., Neumeier, S., et al. Defect and Diffusion Forum, 289-292 (2009), pp.101-108.

Google Scholar

[17] Rettig, R., Heckl, A., Singer, R.F., Materials Science Forum, in press.

Google Scholar

[18] Heckl, A., Singer, R.F., submitted to Metall. Trans., to be published.

Google Scholar

[19] D'Souza, N., Dong, H.B., Scripta Materialia, 56 (2007), pp.41-44.

Google Scholar

[20] Fuchs, G. E., Boutwell, B.A., Materials Science and Engineering A, 333 (2001), pp.72-79.

Google Scholar

[21] Neumeier, S., Pyczak, F., Göken, M., Superalloys 2008, TMS, pp.109-119.

Google Scholar

[22] Giamai, A. F., Anton, D.L., Metallurgical Transactions, 16A (1985), p.1997-(2005).

Google Scholar

[23] Pyczak, F., Devrient, B., Mughrabi, H., Superalloys 2004, TMS, pp.827-836.

Google Scholar

[24] Fuchs, G. E., Boutwell, B.A., JOM, 54 (2002), pp.45-48.

Google Scholar

[25] Karunaratne, M. S. A., Cox, D.C., Carter P., Reed R.C., Superalloys 2000, TMS, pp.263-272.

Google Scholar

[26] Kearsey, R. M., Beddoes, B.A., Jaansalu, K.M., et al., Superalloys 2004, TMS, pp.801-810.

Google Scholar

[27] Caron, P., Superalloys 2000, TMS, pp.737-746.

Google Scholar