Hydrogen Storage of Carbon Nanotubes: Theoretical Studies

Article Preview

Abstract:

a self-consistent-charge density-functional tight-binding method was employed to study the electronic and atomic structures of full hydrogenation carbon nanotues (CNTs) which are relevant to hydrogen storage and device application. Intriguing trends of the geometrics, hydrogenation energy and energy gaps of full hydrogenation of carbon nanotubes as a function of the nanotubes diameter will also be described.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 179-180)

Pages:

722-727

Citation:

Online since:

January 2011

Export:

Price:

[1] S. Iijima, Nature (London) Vol. 354 (1991), p.56.

Google Scholar

[2] M. Hirscher, M. Becher, Journal of Nanoscience and Nanotechnology Vol. 3 (2003), p.3.

Google Scholar

[3] C. Liu, Y.Y. Fan, M. Liu, H. T. Cong, H.M. Cheng, M.S. Dresselhaus, Science Vol. 1127 (1999), p.286.

Google Scholar

[4] V.V. Simonyan, P. Diep, and J.K. Johnson, J. Chem. Phys. Vol. 9778 (1999), p.111.

Google Scholar

[5] P. E. Eaton and T. W. Cole, J. Am. Chem. Soc. 962 (1964), p.86.

Google Scholar

[6] T. Yildirim, P. M. Gehring, D.A. Neumann, P.E. Eaton, T. Emrick, Phys. Rev. Lett. Vol. 4938 (1997), p.78.

Google Scholar

[7] T. Yildirim, S. Ciraci, and A. Buldum, Phys. Rev. B Vol. 7625 (2000), p.62.

Google Scholar

[8] B.S. Hudson, D.A. Braden, S.F. Parker, and H. Prinzbach, Angew. Chem. Int. Ed. Engl. Vol. 514 (2000), p.39.

Google Scholar

[9] M.I. Attalla, A.M. Vassallo, B.N. Tattam, J.V. Hanna, J. Phys. Chem. Vol. 6329 (1993), p.97.

Google Scholar

[10] T. Guo, G. E. Scuseria, Chem. Phys. Lett. 527 (1992), p.191.

Google Scholar

[11] M. Elstner,; P. Hobza, Th. Frauenheim, S. Suhai, E. Kaxiras, J. Chem. Phys. Vol. 114 (2001), p.5149.

Google Scholar

[12] Q. Wu and W.T. Yang, J. Chem. Phys. Vol. 116 (2002), p.515.

Google Scholar

[13] W.T.M. Mooij, F.B. van Duijneveldt, J.G.C. M. van Duijneveld-van de Rijdt, B. P. van Eijck, J. Phys. Chem. A Vol. 103 (1999), p.9872.

DOI: 10.1021/jp991641n

Google Scholar

[14] M. Elstner, D. Porezag, G. Jungnickel, J. Elsner, M. Haugk, T. Frauenheim, S. Suhai, G. Seifert., Phys. Rev. B Vol. 58 (1998), p.7260.

DOI: 10.1103/physrevb.58.7260

Google Scholar

[15] Th. Frauenheim, G. Seifert, M. Elstner, Z. Hajnal, G. Jungnickel, D. Porezag, and S. Suhai, Phys. Status Solid B Vol. 217 (2000), p.41.

Google Scholar

[16] M. Elstner, T. Frauenheim, E. Kaxiras, G. Seifert, and S. Suhai, Phys. Status Solidi B Vol. 217 (2000), p.357.

DOI: 10.1002/(sici)1521-3951(200001)217:1<357::aid-pssb357>3.0.co;2-j

Google Scholar

[17] Th. Frauenheim, G. Seifert, M. Elstner, T. Niehaus, C. Kohler,M. Amkreutz, M. Sternberg, Z. Hajnal, A. Di Carlo and S. Suhai, J. Phys.: Condens. Matter Vol. 1430 (2002), p.15.

DOI: 10.1088/0953-8984/14/11/313

Google Scholar

[18] Th. Frauenheim, G. Seifert, M. Elstner, Z. Hajnal, G. Jungnickel, D. Porezag, and S. Suhai, Phys. Status Solidi B Vol. 217 (2000), p.41.

DOI: 10.1002/(sici)1521-3951(200001)217:1<41::aid-pssb41>3.0.co;2-v

Google Scholar

[19] M. Elstner, T. Frauenheim, E. Kaxiras, G. Seifert, and S. Suhai, Phys. Status Solidi B Vol. 217 (2000), p.357.

DOI: 10.1002/(sici)1521-3951(200001)217:1<357::aid-pssb357>3.0.co;2-j

Google Scholar