Theoretical Investigation of the Influence of Different Chamber Geometries on the Agglomeration Capacity of Carbon Dioxide

Article Preview

Abstract:

This paper addresses the complicated process of carbon dioxide particle formation (agglomeration), which is essential for carbon dioxide snow blasting. Most effective process methods in this field possess a dedicated location where agglomeration is likely to occur. Research has shown that successful agglomeration is a key factor when cleaning or deburring with solid carbon dioxide. The following describes the mechanisms of carbon dioxide (CO2) snow agglomeration inside this so-called agglomeration chamber. The elements of larger size, as well as an irregular shape directly lead to the increase of effectiveness. Therefore, it is necessary to determine how to improve this process for the purpose of dealing with difficult workpieces and materials and broaden the possibilities of carbon dioxide blasting. One of the main factors of agglomeration is turbulence. In short, the more turbulent activity that takes place, the better is the particle formation of solid carbon dioxide. Numerous geometries were created with different inserts, such as static mixers or angled tubes, in hope to increase turbulence. The basic idea is to implement these geometries in computational fluid dynamics (CFD) and finally proceed to an evaluation and comparison of the simulation results, in order to select the best candidates for optimization and realization.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

169-175

Citation:

Online since:

October 2017

Export:

Price:

* - Corresponding Author

[1] E. Uhlmann, M. Kretzschmar, F. Elbing, V. Mihotovic, Deburring with CO2 Snow Blasting, in Burrs - Analysis, Control and Removal, 2010, pp.181-187.

DOI: 10.1007/978-3-642-00568-8_19

Google Scholar

[2] R. Span, D2 Stoffwerte von bedeutenden reinen Fluiden, in: VDI-Wärmeatlas, Berlin, Heidelberg, 2013, pp.175-356.

DOI: 10.1007/978-3-642-19981-3_12

Google Scholar

[3] F. Flohr, E. Preisegger, D4 Stoffwerte von technischen Wärmeträgern, in VDI-Wärmeatlas, Berlin, Heidelberg, 2013, pp.489-584.

DOI: 10.1007/978-3-642-19981-3_22

Google Scholar

[4] M. Bilz, Möglichkeiten und Grenzen des Strahlspanens mittels CO2-Hochdruckstrahlen, Fraunhofer Verlag (2014).

Google Scholar

[5] R. Sherman, Cleaning with Carbon Dioxide Snow, in: Handbook for Critical Cleaning Cleaning Agents and Systems, pp.397-410, (2011).

DOI: 10.1201/b10897-34

Google Scholar

[6] E. Uhlmann, E. Mernissi, A. R. Hollan, R. Veit, Blasting with Solid Carbon Dioxide: Dry Ice Blasting - CO2-Snow Blasting, (2006).

DOI: 10.1007/978-1-4020-9402-6_32

Google Scholar

[7] T. -C. Lin, Y. -J. Shen, M. -R. Wang, Agglomeration Processes and Mechanisms of CO2 Snow Inside a Tube, in Aerosol Science and Technology 48, 2, 2014, pp.228-237.

DOI: 10.1080/02786826.2013.868597

Google Scholar

[8] Y. -H. Liu, G. Calvert, C. Hare, M. Ghadiri, S. Matsusaka, Size measurement of dry ice particles produced from liquid carbon dioxide, in: Journal of Aerosol Science 48, p.1–9, (2012).

DOI: 10.1016/j.jaerosci.2012.01.007

Google Scholar

[9] Y. -H. Liu, H. Maruyama, S. Matsusaka, Agglomeration process of dry ice particles produced by expanding liquid carbon dioxide. Advanced Powder Technology 21, 6, 2010, pp.652-657.

DOI: 10.1016/j.apt.2010.07.009

Google Scholar

[10] W. Pietsch, An interdisciplinary approach to size enlargement by agglomeration, in: Powder Technology 130, 2003, pp.8-13.

DOI: 10.1016/s0032-5910(02)00218-8

Google Scholar

[11] Linde Group, W. Schmidtke, CO2 particles nozzle, DE 19950016 C5, (2012).

Google Scholar

[12] E. Laurien, H. Oertel, Numerische Strömungsmechanik - Grundgleichungen und Modelle - Lösungsmethoden - Qualität und Genauigkeit, Wiesbaden, (2011).

DOI: 10.1007/978-3-8348-9964-4

Google Scholar