Determination of Dynamic Parameters for Underwater Robots with Crawler Drives

Article Preview

Abstract:

The paper presents methods used to determine the parameters necessary to build a mathematical model of an underwater inspection robot with a crawler drive. The parameters present in the dynamics equation will be determined by means of advanced mechatronic design tools, including: CAD/CAE software and MES modules. The robot dynamics are described by means of type II Lagrange equations for a non-holonomic system. The details of the kinetic and dynamic equation derivation are highly complex and exceed the scope of this paper. In this paper, the authors concentrate on the methods of determining such dynamic equation parameters as: hydrodynamic resistance factor, precise robot volume and weight, frontal cross-sectional surface and mass moments of inertia.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

130-139

Citation:

Online since:

January 2016

Export:

Price:

* - Corresponding Author

[1] VAN AMERONGEN, Job; COELINGH, Erik; DE VRIES, Theo JA. Computer support for mechatronic control system design. Robotics and autonomous systems, 2000, 30. 3: 249-260.

DOI: 10.1016/s0921-8890(99)00090-1

Google Scholar

[2] CHOI, H. R.; RYEW, S. M. Robotic system with active steering capability for internal inspection of urban gas pipelines. Mechatronics, 2002, 5. 12: 713-736.

DOI: 10.1016/s0957-4158(01)00022-8

Google Scholar

[3] GIERGIEL, Mariusz, et al. Dynamics of underwater inspection robot. Pomiary, Automatyka, Robotyka, 2013, 17: 76-79.

Google Scholar

[4] GIERGIEL, MARIUSZ; MAŁKA, PIOTR. Mobile robot assigned for diagnostic and maintenance reservoirs with liquid. Modelling and Optimization of Physical Systems, 2009, 8: 43-48.

Google Scholar

[5] KURC, Krzysztof; SZYBICKI, Dariusz. Kinematics of a robot with crawler drive. Mechanics and Mechanical Engineering, 2011, 15. 4: 93-101.

Google Scholar

[6] TĂTAR, Mihai Olimpiu; ALUŢEI, Adrian; MÂNDRU, Dan. In-pipe modular robotic systems for inspection and exploration. Solid State Phenomena, 2010, 164: 425-430.

DOI: 10.4028/www.scientific.net/ssp.164.425

Google Scholar

[7] TĂTAR, O.; MANDRU, D.; ARDELEAN, I. Development of mobile minirobots for in pipe inspection tasks. Mechanika, 2007, 6. 68: 60-64.

Google Scholar

[8] SWITONSKI, Eugeniusz; LAWOMIR KCIUK, S.; KLEIN, Wojciech. Modelling and investigation of dynamic parameters of tracked vehicles. Mechanics and Mechanical Engineering, 2011, 15. 4: 115-130.

Google Scholar

[9] SZYBICKI, D., et al. Dynamika gąsienicowego robota inspekcyjnego. Journal of Civil Engineering, Environment and Architecture, 2014, 61, 149-159.

DOI: 10.7862/rb.2014.37

Google Scholar

[10] LIU, Wei; ZENG, Ming; ZHANG, Shimin. Design and kinematical analysis of the contra-flow crawler in pipeline. In: Electrical and Control Engineering (ICECE), 2011 International Conference on. IEEE, 2011. pp.622-624.

DOI: 10.1109/iceceng.2011.6057766

Google Scholar

[11] KWON, Young-Sik, et al. A flat pipeline inspection robot with two wheel chains. In: Robotics and Automation (ICRA), 2011 IEEE International Conference on. IEEE, 2011. pp.5141-5146.

DOI: 10.1109/icra.2011.5979712

Google Scholar

[12] HU, Zheng; APPLETON, Ernest. Dynamic characteristics of a novel self-drive pipeline pig. Robotics, IEEE Transactions on, 2005, 21. 5: 781-789.

DOI: 10.1109/tro.2005.852258

Google Scholar