Supercooling and Phase Separation of Inorganic Salt Hydrates as PCMs

Article Preview

Abstract:

Inorganic salt hydrates as a new type of clean and renewable energy storage materials are widely used in a variety of fields due to their high volumetric latent storage density. However, the supercooling and phase separation effects limit their applications. In this paper, the characteristics of inorganic salt hydrates as PCMs were introduced, and the supercooling and phase separation for inorganic salt hydrates as PCMs were summarized in details. Then, some new approaches of nucleating and thickening agents to overcome the supercooling and phase separation were presented. Finally, the prospects and new trends of salt hydrates as PCMs in the future were also demonstrated.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

2602-2605

Citation:

Online since:

July 2011

Export:

Price:

[1] E. Halawa, W. Saman: Renew Energ Vol. 36 (2011), pp.259-264.

Google Scholar

[2] H.A. Zondag, V.M. van Essen, L.P.J. Bleijendaal, B.W.J. Kikkert, M. Bakker: International Renewable Energy Storage Conference IRES Vol. 5 (2010), pp.22-24.

Google Scholar

[3] A.M. Borreguero, M.L. Sánchez, J.L. Valverde, M. Carmona, J.F. Rodríguez: Appl Energy Vol. 88(2011), pp.930-937.

Google Scholar

[4] H. Mehling, L.F. Cabeza: Heat and cold storage with PCM (An up to date introduction into basics and applications, Germany 2008).

DOI: 10.1007/978-3-540-68557-9

Google Scholar

[5] A. Sharma, V.V. Tyagi, C.R. Chen, D. Buddhi: Renew Sust Energy Rev Vol. 13 (2009), pp.318-345.

Google Scholar

[6] M.M. Farid, A.M. Khudhair, S.A.K. Razack, S. Al-Hallaj: Energ Convers Manage Vol. 45 (2004), pp.1597-1615.

Google Scholar

[7] B. Sandnes, J. Rekstad: Sol Energy Vol. 80 (2006), pp.616-625.

Google Scholar

[8] D.R. Biswas: Sol Energy Vol. 19 (1977), pp.99-100.

Google Scholar

[9] Z.W. Tang, A.J. Liu, Z.F. Chen: Energ Convers Manage Vol. 51 (2010), pp.1459-1463.

Google Scholar

[10] L.F. Cabeza, G. Sevensson, S. Hiebler, H. Mehling: Appl Therm Eng Vol. 23 (2003), pp.1697-1704.

Google Scholar

[11] H.P. Garg, M. Nasim: Energ Convers Menage Vol. 21 (1981), pp.125-130.

Google Scholar

[12] Y.L. Xu, D. Liu: Mater Eng Vol. 1 (2006), pp.218-221.

Google Scholar

[13] K. Bilen, F. Takgil, K. Kaygusuz: Energ Source Vol. 30 (2008), pp.775-787.

Google Scholar

[14] G.A. Lane, H.E. Rossow, U.S. Patent 4, 613, 444 (1986).

Google Scholar

[15] H.W. Ryu, S.W. Woo, B.C. Shin, S.D. KimL: Sol Energy Mater Sol Cells Vol. 27 (1992), pp.161-172.

Google Scholar

[16] B. Sandnes: Thesis submitted for the Degree of Doctor Scientiarum, University of Oslo, (2003).

Google Scholar

[17] S. Furbo, in: Thermal Storage of Solar Energy, edited by C. den Ouden, Nijhoff. The Hague (1981).

Google Scholar

[18] G.A. Lane, Solar heat storage: Latent heat materials, phase change material, U.S., (1983).

Google Scholar

[19] G.A. Lane, H.E. Rossow, U.S. Patent 4, 613, 444. (1986).

Google Scholar

[20] T. Shimomural, T. Namba, in: Superabsorbent Polymers (American Chemical Society publications, American 1994).

Google Scholar

[21] V.V. Tyagi, D. Buddhi: Sol Energy Mater Sol Cells Vol. 92 (2008), pp.891-899.

Google Scholar

[22] C. Voelker, O. Kornadt, M. Ostry: Energy Buildings Vol. 40 (2008), pp.937-944.

DOI: 10.1016/j.enbuild.2007.07.008

Google Scholar

[23] K. Nagano, T. Mochida, S. Takeda, R. Domański, M. Rebow: Appl Therm Eng Vol. 23 (2003), pp.229-241.

Google Scholar

[24] K. Nagano, K. Ogawa, T. Mochida, K. Hayashi, H. Ogoshi: Appl Therm Eng Vol. 24 (2004), pp.221-232.

Google Scholar