Guidelines for the Design of High-Performance Perovskite Based Solar Cells

Article Preview

Abstract:

In the aim of finding the optimal solar cell structure which allows better efficiency, stability and reduced cost, a general study of a Methyl Ammonium lead Iodide CH3NH3PbI3 based perovskite solar cell is made. Three different electron transport material compounds ETMs; TiO2, ZnO and SnO2 are comparatively studied considering the same hole transport material HTM, Spiro-OMeTAD. The photovoltaic parameters, i.e. the open circuit voltage (Voc), the short circuit current (Jsc) and the power conversion efficiency (PCE) are performed considering the ETM layers thicknesses, and the defect densities in both interfaces ETM/Perovskite and Perovskite/HTM. It is found that solar cell with SnO2 present the highest PCE for almost all configurations. Finally, the optimized cell is simulated with different organic and inorganic HTMs such as PEDOT: PSS, Cul and CuSbS2.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

95-105

Citation:

Online since:

June 2022

Export:

Price:

* - Corresponding Author

[1] NREL, Annual Technology Baseline Electricity Data 2020. https://www.nrel.gov/news/ program/(2020).

Google Scholar

[2] R. Chang, J. Zhang, S. Ullah, Z. Zhu, Y. Chen, H. Guo, J. Gu, The Cesium doping using the nonstoichiometric precursor for improved CH3NH3PbI3 perovskite films and solar cells in ambient air, Thin Solid Films 690 (2019) 137-563.

DOI: 10.1016/j.tsf.2019.137563

Google Scholar

[3] NREL, Annual Technology Baseline Electricity Data 2019. https://www.nrel.gov/news/ program/(2019).

Google Scholar

[4] M. A. Green, A. H. Baillie, H. J. Snaith, The emergence of perovskite solar cells, Nature Photonics 8 (2014) 506 - 14.

Google Scholar

[5] Q. Lin, A. Armin, R. C. R. Nagiri, P. L. Burn, P. Meredith, Electro-optics of perovskite solar cells, Nat. Photon. 9(2015) 106-112.

DOI: 10.1038/nphoton.2014.284

Google Scholar

[6] G. Niu, W. Li, J. Li, X. Liang, L. Wang, Enhancement of thermal stability for perovskite solar cells through cesium doping, RSC Advances 7 (2017), 17473-17479.

DOI: 10.1039/c6ra28501e

Google Scholar

[7] H. L. Y. Guan, J. Y. S. L. Xue, L. H. Sheng, Q. F. Cheng, X. L. Chang, J. Lia, High-thermoelectric performance of TiO2-x fabricated under high pressure at high Temperatures, Journal of Materiomics 4(2017) 286-292.

Google Scholar

[8] Y. Ko, Y. Kim, S. Y. Kong, S. C. Kunnan, Y. Jun, Improved performance of sol–gel ZnO-based perovskite solar cells via TiCl4 interfacial modification, Solar Energy Materials and Solar Cells 183 (2018) 157–163.

DOI: 10.1016/j.solmat.2018.04.021

Google Scholar

[9] W. J. Ke, G. J. Fang, Q. Liu, L. B. Xiong, P. L. Qin, H. Tao, J. Wang, H. W. Lei, B. R. Li, J. W. Wan, G. Yang, Y. F. Yan, Low-Temperature Solution-Processed Tin Oxide as an Alternative Electron Transporting Layer for Efficient Perovskite Solar Cells, J. Am. Chem. Soc. 137(2015) 6730–6733.

DOI: 10.1021/jacs.5b01994

Google Scholar

[10] G. Yang, C. Chen, F. Yao, Z. Chen, Q. Zhang, X. Zheng, G. Fang, Effective Carrier‐Concentration Tuning of SnO2 Quantum Dot Electron‐Selective Layers for High‐Performance Planar Perovskite Solar Cells, Advanced Materials 30(2018) 1706023.

DOI: 10.1002/adma.201706023

Google Scholar

[11] E. H. Anaraki, A. Kermanpur, L. Steier, K. Domanski, T. Matsui, W. Tress, M. Saliba, A. Abate, M. Grätzel, A. Hagfeldt, J. Correa-Baena, Highly efficient and stable planar perovskite solar cells by solution-processed tin oxide, Energy Environ. Sci. 9(2016) 3128-3134.

DOI: 10.1039/c6ee02390h

Google Scholar

[12] F. Wang, S. Bai, W. Tress, A. Hagfeldt, F. Gao, Defects engineering for high-performance perovskite solar cells, npj Flex Electron 22 (2018) 2-22.

DOI: 10.1038/s41528-018-0035-z

Google Scholar

[13] W. H. Nguyen, C. D. Bailie, E. L. Unger, M. D. McGehee, Enhancing the Hole-Conductivity of Spiro-OMeTAD without Oxygen or Lithium Salts by Using Spiro(TFSI)2 in Perovskite and Dye-Sensitized Solar Cells, Journal of the American Chemical Society 136(2014), 10996–11001.

DOI: 10.1021/ja504539w

Google Scholar

[14] F. Lamberti, T. Gatti, E. Cescon, R. Sorrentino, A. Rizzo, E. Menna, L. Franco, Evidence of Spiro-OMeTAD De-doping by tert-Butylpyridine Additive in HoleTransporting Layers for Perovskite Solar Cells, Chem. 5(2019) 1806-1817.

DOI: 10.1016/j.chempr.2019.04.003

Google Scholar

[15] S. Ryu, J. H. Noh, N. J. Jeon, Y. C. Kim, W. S. Yang, J. W. Seo, S. I. Seok, Voltage output of efficient perovskite solar cells with high open-circuit voltage and fill factor, Energy Environ. Sci. 7(2014) 2614-2618.

DOI: 10.1039/c4ee00762j

Google Scholar

[16] K. H. Hendriks, J. J. Van Franeker, B. J. Bruijnaers, J. A. Anta, M. M. Wienk, R. A. J. Janssen, 2-Methoxyethanol as a new solvent for processing methylammonium lead halide perovskite solar cells, J. Mater. Chem 5(2017) 2346–2354.

DOI: 10.1039/c6ta09125c

Google Scholar

[17] V. E. Madhaven, I. Zimmermann, C. R. Carmona, G. Grancini, M. Buffiere, A. Belaidi, M. K. Nazeeruddin, Copper Thiocyanate Inorganic Hole-Transporting Material for High-Efficiency Perovskite Solar Cells, ACS Energy Lett. 1(2016) 1112–1117.

DOI: 10.1021/acsenergylett.6b00501

Google Scholar

[18] H. Zhang, J. Cheng, F. Lin, H. He, J. Mao, K. S. Wong, W. C. H. Choy, Pinhole-Free and Surface-Nanostructured NiOx Film by Room-Temperature Solution Process for High-Performance Flexible Perovskite Solar Cells with Good Stability and Reproducibility, ACS Nano 10(2016) 1503–1511.

DOI: 10.1021/acsnano.5b07043

Google Scholar

[19] A. Abrusci, S. D. Stranks, P. Docampo, H. L. Yip, A. K. Y. Jen, H. J. Snaith, High-Performance Perovskite-Polymer Hybrid Solar Cells via Electronic Coupling with Fullerene Monolayers, Nano Lett. 13(2013) 3124–3128.

DOI: 10.1021/nl401044q

Google Scholar

[20] W. S. Yang, J. H. Noh, N. J. Jeon, Y. C. Kim, S. Ryu, J. Seo, S. I. Seok, High-performance photovoltaic perovskite layers fabricated through intramolecular exchange, Science 348(2015) 1234 -1237.

DOI: 10.1126/science.aaa9272

Google Scholar

[21] H. Elbohy, B. Bahrami, S. Mabrouk, K. M. Reza, A. Gurung, R. Pathak, M. Liang, Q. Qiao, K. Zhu, Tuning Hole Transport Layer Using Urea for High‐Performance Perovskite Solar Cells, Adv. Funct. Mater 29(2018), 1806740.

DOI: 10.1002/adfm.201806740

Google Scholar

[22] M. Jung, Y. C. Kim, N. J. Jeon, W. S. Yang, J. Seo, J. H. Noh, S. I. Seok, Thermal Stability of CuSCN Hole Conductor-Based Perovskite Solar Cells, Chem. Sus. Chem. 9(2016) 2592-2596.

DOI: 10.1002/cssc.201600957

Google Scholar

[23] B. K. Menariya, R. Ameta, S. C. Ameta, A Comparative Study on Photocatalytic Activity of ZnO, SnO2 and ZnO-SnO2 Composites, J. Chem. Sci. 15(2017) 2581-5423.

Google Scholar

[24] Y. Raoui, H. Ez-Zahraouy, N. Tahiri, O. El Bounagui, S. Ahmad, S. Kazim, Performance analysis of MAPbI3 based perovskite solar cells employing diverse charge selective contacts: Simulation study, Solar Energy 193(2019) 948–955.

DOI: 10.1016/j.solener.2019.10.009

Google Scholar

[25] A. Ali, L. M. Chepyga, L. S. Khanzada, A. Osvet, C. J. Brabec, M. Batentschuk, Effect of water vapor content during the solid state synthesis of manganese-doped magnesium fluoro-germanate phosphor on its chemistry and photoluminescent properties, Opt. Mat. 99(2020) 0925-3467.

DOI: 10.1016/j.optmat.2019.109572

Google Scholar

[26] K. R. Adhikari, S. Gurung, B. K. Bhattarai, B. M. Soucase, Comparative study on MAPbI3 based solar cells using different electron transporting materials, Physica Status Solidi 13(2015), 13–17.

DOI: 10.1002/pssc.201510078

Google Scholar

[27] F. Azri, A. Meftah, N. Sengouga, Electron and hole transport layers optimization by numerical simulation of a perovskite solar cell, Solar Energy 181(2019) 372–378.

DOI: 10.1016/j.solener.2019.02.017

Google Scholar

[28] E. Karimi, S. M. B. Ghorashi, The Effect of SnO2 and ZnO on the Performance of Perovskite Solar Cells, Journal of Electronic Materials. 49(2020), 364–376.

DOI: 10.1007/s11664-019-07804-4

Google Scholar

[29] R.Rajeswari, M.Mrinalini, S.Prasanthkumar, L.Giribabu, Emerging of Inorganic Hole Transporting Materials For Perovskite Solar Cells, Chem. Rec. 17(2017) 1–20.

DOI: 10.1002/tcr.201600117

Google Scholar

[30] T. Minemoto, M. Murata, Device modeling of perovskite solar cells based on structural similarity with thin film inorganic semiconductor solar cells, J. Applied Physics 116(2014) 054505.

DOI: 10.1063/1.4891982

Google Scholar

[31] A .S. Chouhan, N. P. Jasti, S. Avasthi, Effect of interface defect density on performance of perovskite solar cell: Correlation of simulation and experiment, Materials Letters, 221 (2018) 150–153.

DOI: 10.1016/j.matlet.2018.03.095

Google Scholar

[32] H. Liu, Z. Huang, S. Wei, L. Zheng, L. Xiao, Q. Gong, Nano-structured electron transporting materials for perovskite solar cells, Nanoscale 8(2016) 6209–6221.

DOI: 10.1039/c5nr05207f

Google Scholar

[33] X. Yin, P. Chen, M. Que, Y. Xing, W. Que, C. Niu, J. Shao, Highly Efficient Flexible Perovskite Solar Cells Using Solution-Derived NiOx Hole Contacts, ACS Nano 10(2016) 3630–3636.

DOI: 10.1021/acsnano.5b08135

Google Scholar

[34] A. Bedia, F. Z. Bedia, M. Aillerie, N. Maloufi, S. O. S. Hamady, O. Perroud, B. Benyoucef, Optical, electrical and structural properties of nano-pyramidal ZnO films grown on glass substrate by spray pyrolysis technique, Optical Materials 36(2014) 1123-1130.

DOI: 10.1016/j.optmat.2014.02.012

Google Scholar

[35] Y. Chen, Y. Sun, J. Peng, J.Tang, K. Zheng, Z. Liang, 2D Ruddlesden–Popper Perovskites for Optoelectronics, Adv. Mater. 30(2018) 1703487.

DOI: 10.1002/adma.201703487

Google Scholar

[36] Z. L. Tseng, C. H. Chiang, C. G. Wu, Surface Engineering of ZnO Thin Film for High Efficiency Planar Perovskite Solar Cells, Scientific reports 5(2015) 13211.

DOI: 10.1038/srep13211

Google Scholar

[37] S. Song, G. Kang, L. Pyeon, C. Lim, G. Y. Lee, T. Park, J. Choi, Systematically Optimized Bilayered Electron Transport Layer for Highly Efficient Planar Perovskite Solar Cells (η = 21.1%), ACS. Energy Lett. 2(2017) 2667.

DOI: 10.1021/acsenergylett.7b00888

Google Scholar

[38] Q. Jiang, Z. Chu, P. Wang, X. Yang, H. Liu, Y. Wang, Z. Yin, J. Wu, X. Zhang, J. You, Planar‐Structure Perovskite Solar Cells with Efficiency beyond 21%, Adv. Mater 29(2017) 1703852.

DOI: 10.1002/adma.201703852

Google Scholar

[39] J. Song, E. Zheng, J. Biang, X. F. Wang, W. Tian, Y. Sanehira, T. Miyasaka, Low-temperature SnO2-based electron selective contact for efficient and stable perovskite solar cells, J. Mater. Chem 3(2015) 10837.

DOI: 10.1039/c5ta01207d

Google Scholar