Coatings Based on Light-Weight Alkali Activated Mortars for Steel Corrosion Protection

Article Preview

Abstract:

Alkali activated materials and geopolymers have attracted a lot of attention in the last 20 years thanks to their excellent mechanical performances, durability and sustainability properties, especially for civil applications. These materials also exhibit promising properties as fire- and corrosion-resistant protection systems. In a previous study, a 20-mm coating based on light-weight alkali activated mortar (LWAAM) suitable for the protection of steel structures against fire was successfully developed. To understand if the same coating is also able to ensure corrosion protection to steel structures, this study reports the results obtained in two different chloride-rich environments. The corrosion performance of the new system based on steel coated by LWAAM (using expanded perlite and hydrogen peroxide in the mix) was compared with a steel coated by a traditional alkali activated mortar (NWAAM). Electrochemical tests on steel samples immersed in an alkaline solution simulating the pore environment of the binder or embedded in the two different types of mortars were carried out in presence of different chloride concentrations. It was found that the alkaline environment is able to passivate the steel surface, however, the increasing of chloride ions concentration, affects passive film stability and promotes steel corrosion. In presence of low chloride concentration (i.e., 0.2M NaCl), the increased porosity of the LWAAM did not impair the steel corrosion protection, when compared with NWAAM.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

143-150

Citation:

Online since:

May 2022

Export:

Price:

* - Corresponding Author

[1] J.L. Provis, Alkali-activated materials, Cem. Concr. Res. 114 (2018) 40–48. https://doi.org/10.1016/j.cemconres.2017.02.009.

Google Scholar

[2] C. Shi, B. Qu, J.L. Provis, Recent progress in low-carbon binders, Cem. Concr. Res. 122 (2019) 227–250. https://doi.org/10.1016/j.cemconres.2019.05.009.

DOI: 10.1016/j.cemconres.2019.05.009

Google Scholar

[3] Y. Wu, B. Lu, T. Bai, H. Wang, F. Du, Y. Zhang, L. Cai, C. Jiang, W. Wang, Geopolymer, green alkali activated cementitious material: Synthesis, applications and challenges, Constr. Build. Mater. 224 (2019) 930–949. https://doi.org/10.1016/j.conbuildmat.2019.07.112.

DOI: 10.1016/j.conbuildmat.2019.07.112

Google Scholar

[4] G. Masi, S. Manzi, M.C. Bignozzi, Gender Balance in Construction Material Research: The Analysis of Alkali-Activated Materials by a Bibliometric Study Using Scopus Database, Front. Mater. 7 (2020). https://doi.org/10.3389/fmats.2020.572514.

Google Scholar

[5] J.L. Provis, Geopolymers and other alkali activated materials: Why, how, and what?, Mater. Struct. Constr. 47 (2014) 11–25. https://doi.org/10.1617/s11527-013-0211-5.

DOI: 10.1617/s11527-013-0211-5

Google Scholar

[6] S. Mundra, S. Bernal Lopez, M. Criado, P. Hlaváček, G. Ebell, S. Reinemann, G. Gluth, J. Provis, Steel corrosion in reinforced alkali-activated materials, RILEM Tech. Lett. 2 (2017) 33–39. https://doi.org/10.21809/rilemtechlett.2017.39.

DOI: 10.21809/rilemtechlett.2017.39

Google Scholar

[7] M. Cyr, R. Pouhet, Carbonation in the pore solution of metakaolin-based geopolymer, Cem. Concr. Res. 88 (2016) 227–235. https://doi.org/10.1016/j.cemconres.2016.05.008.

DOI: 10.1016/j.cemconres.2016.05.008

Google Scholar

[8] S. Bernal, R. San Nicolas, J. Provis, R. Mejía De Gutiérrez, J. Van Deventer, Natural carbonation of aged alkali-activated slag concretes, Mater. Struct. Constr. 47 (2014) 693–707. https://doi.org/10.1617/s11527-013-0089-2.

DOI: 10.1617/s11527-013-0089-2

Google Scholar

[9] M. Sufian Badar, K. Kupwade-Patil, S.A. Bernal, J.L. Provis, E.N. Allouche, Corrosion of steel bars induced by accelerated carbonation in low and high calcium fly ash geopolymer concretes, Constr. Build. Mater. 61 (2014) 79–89. https://doi.org/10.1016/j.conbuildmat.2014.03.015.

DOI: 10.1016/j.conbuildmat.2014.03.015

Google Scholar

[10] J. Miranda, A. Fernández-Jiménez, J. González, A. Palomo, Corrosion resistance in activated fly ash mortars, Cem. Concr. Res. 35 (2005) 1210–1217. https://doi.org/10.1016/J.CEMCONRES.2004.07.030.

DOI: 10.1016/j.cemconres.2004.07.030

Google Scholar

[11] D. Bastidas, A. Fernández-Jiménez, A. Palomo, J. González, A study on the passive state stability of steel embedded in activated fly ash mortars, Corros. Sci. 50 (2008) 1058–1065. https://doi.org/10.1016/J.CORSCI.2007.11.016.

DOI: 10.1016/j.corsci.2007.11.016

Google Scholar

[12] S. Mundra, M. Criado, S. Bernal, J. Provis, Chloride-induced corrosion of steel rebars in simulated pore solutions of alkali-activated concretes, Cem. Concr. Res. 100 (2017) 385–397. https://doi.org/10.1016/J.CEMCONRES.2017.08.006.

DOI: 10.1016/j.cemconres.2017.08.006

Google Scholar

[13] J. Bosch, U. Martin, J. Ress, K. Klimek, D.M. Bastidas, Influence of Thermomechanical Treatments on Corrosion of Carbon Steel in Synthetic Geopolymer Fly Ash Pore Solution, Appl. Sci. 2021. 11 (2021) 4054. https://doi.org/10.3390/APP11094054.

DOI: 10.3390/app11094054

Google Scholar

[14] R.M. Novais, R.C. Pullar, J.A. Labrincha, Geopolymer foams: An overview of recent advancements, Prog. Mater. Sci. 109 (2020). https://doi.org/10.1016/j.pmatsci.2019.100621.

DOI: 10.1016/j.pmatsci.2019.100621

Google Scholar

[15] G. Masi, W. Rickard, L. Vickers, M. Bignozzi, A. van Riessen, A comparison between different foaming methods for the synthesis of light weight geopolymers, Ceram. Int. 40 (2014) 13891–13902. https://doi.org/10.1016/j.ceramint.2014.05.108.

DOI: 10.1016/j.ceramint.2014.05.108

Google Scholar

[16] W. Rickard, L. Vickers, A. van Riessen, Performance of fibre reinforced, low density metakaolin geopolymers under simulated fire conditions, Appl. Clay Sci. 73 (2013) 71–77. https://doi.org/10.1016/j.clay.2012.10.006.

DOI: 10.1016/j.clay.2012.10.006

Google Scholar

[17] M.B. Watolla, G. Gluth, P. Sturm, W. Rickard, S. Krüger, B. Schartel, Intumescent geopolymer-bound coatings for fire protection of steel, J. Ceram. Sci. Technol. 8 (2017) 351–364. https://doi.org/10.4416/JCST2017-00035.

Google Scholar

[18] K. Sakkas, A. Sofianos, P. Nomikos, D. Panias, Behaviour of Passive Fire Protection K-Geopolymer under Successive Severe Fire Incidents, Materials (Basel). 8 (2015) 6096–6104. https://doi.org/10.3390/ma8095294.

DOI: 10.3390/ma8095294

Google Scholar

[19] L. Carabba, R. Moricone, G.E. Scarponi, A. Tugnoli, M. Bignozzi, Alkali activated lightweight mortars for passive fire protection: A preliminary study, Constr. Build. Mater. 195 (2019) 75–84. https://doi.org/10.1016/j.conbuildmat.2018.11.005.

DOI: 10.1016/j.conbuildmat.2018.11.005

Google Scholar

[20] G. Masi, W. Rickard, M. Bignozzi, A. Van Riessen, The effect of organic and inorganic fibres on the mechanical and thermal properties of aluminate activated geopolymers, Compos. Part B Eng. 76 (2015) 218–228. https://doi.org/10.1016/j.compositesb.2015.02.023.

DOI: 10.1016/j.compositesb.2015.02.023

Google Scholar

[21] L. Carabba, S. Pirskawetz, S. Krüger, G. Gluth, M. Bignozzi, Acoustic emission study of heat-induced cracking in fly ash-based alkali-activated pastes and lightweight mortars, Cem. Concr. Compos. 102 (2019) 145–156. https://doi.org/10.1016/j.cemconcomp.2019.04.013.

DOI: 10.1016/j.cemconcomp.2019.04.013

Google Scholar

[22] G. Gluth, W. Rickard, S. Werner, S. Pirskawetz, Acoustic emission and microstructural changes in fly ash geopolymer concretes exposed to simulated fire, Mater. Struct. Constr. 49 (2016) 5243–5254. https://doi.org/10.1617/s11527-016-0857-x.

DOI: 10.1617/s11527-016-0857-x

Google Scholar

[23] L. Carabba, G. Masi, S. Pirskawetz, S. Krüger, G. Gluth, M. Bignozzi, Thermal properties and steel corrosion in light-weight alkali activated mortars, in: Int. Conf. Sustain. Mater. Syst. Struct. (SMSS 2019) New Gener. Constr. Mater., 2019: p.125–132.

DOI: 10.1016/j.cemconcomp.2019.04.013

Google Scholar

[24] A. Dal Pozzo, L. Carabba, M. Bignozzi, A. Tugnoli, Life cycle assessment of a geopolymer mixture for fireproofing applications, Int. J. Life Cycle Assess. 24 (2019) 1743–1757. https://doi.org/10.1007/s11367-019-01603-z.

DOI: 10.1007/s11367-019-01603-z

Google Scholar

[25] G. Masi, Steel corrosion behavior in light weight fly-ash based Alkali activated mortars, Appl. Sci. 11 (2021) 1–13. https://doi.org/10.3390/app11041908.

DOI: 10.3390/app11041908

Google Scholar

[26] C. Monticelli, M. Natali, A. Balbo, C. Chiavari, F. Zanotto, S. Manzi, M. Bignozzi, Corrosion behavior of steel in alkali-activated fly ash mortars in the light of their microstructural, mechanical and chemical characterization, Cem. Concr. Res. 80 (2016) 60–68. https://doi.org/10.1016/j.cemconres.2015.11.001.

DOI: 10.1016/j.cemconres.2015.11.001

Google Scholar

[27] M. Babaee, A. Castel, Chloride-induced corrosion of reinforcement in low-calcium fly ash-based geopolymer concrete, Cem. Concr. Res. 88 (2016) 96–107. https://doi.org/10.1016/J.CEMCONRES.2016.05.012.

DOI: 10.1016/j.cemconres.2016.05.012

Google Scholar