Specific Mechanical Properties of New Hybrid Laminates with Thermoplastic Matrix and a Variable Metal Component

Article Preview

Abstract:

Hybrid laminates combine the positive properties of metals and fibre reinforced plastics. Thereby, the relatively free selectable components provide further benefits. Especially thermoplastic matrices offer positive aspects like the possibility of deformation, recyclability as well as the possibility of mass production. To obtain such hybrid laminates the first step is the production of pre-consolidated unidirectional endless fibre reinforced thermoplastic foils. In a second step, these pre-impregnated fibre-foil tapes were alternating thermally pressed with metallic layers in tailored compositions. To use the full capacity of the hybrid laminates an adequate interface between the fibre reinforced thermoplastics and the metallic foil is essential. Different investigations of the authors display the principle possibility to produce hybrid laminates with carbon endless fibre reinforced thermoplastics and aluminium alloy foils. Nevertheless, load free delamination’s occurs. The reason for these delaminations within the interface of the fibre reinforced thermoplastics and the metallic foil are the differences in the thermal expansion coefficient of the components. Caused by the consolidation at elevated temperatures these differences become more significant and reduce the reproducibility of the hybrid laminates. To minimize these thermal induced stresses the graduation of the thermal expansion coefficient is one possibility. This graduation is possible by utilising glass fibre thermoplastic tapes between the aluminium alloy foil and the carbon fibre reinforced thermoplastics. Further investigations are dealing with so called expansion alloys to adapt the thermal expansion coefficient. The latter approach provides the benefit to utilize the full mechanical properties of the carbon fibre reinforced thermoplastics and to economize the glass-fibre tapes. Nevertheless, these expansion alloys are characterized by a high density. Hence, within this contribution the specific mechanical properties as well as the advantages and disadvantages of hybrid laminates with expansion alloys or aluminium alloys with glass-fibre thermoplastics interlayers are discussed and assessed. These specific mechanical properties display the potential of the expansion alloy in spite of the high density by means of comparable values. The sample only consisting of carbon fibre reinforced plastics highlights the great variety and possibilities of different hybrid laminate structures and combinations regarding the thickness and positioning of the component layers.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 825-826)

Pages:

344-352

Citation:

Online since:

July 2015

Export:

Price:

* - Corresponding Author

[1] N.N.: BONDAL®, das Stahl-Sandwichblech zur effektiven Reduzierung von Körperschall, Produktinformation Thyssen Krupp Steel, (2006).

Google Scholar

[2] ALUCOBOND®, Produktinformation ALCAN Singen GmbH, (2007).

Google Scholar

[3] T. Pärnänen, M. Kanerva, E. Sarlin, O. Saarela, Debonding and impact damage in stainless steel fibre metal laminates prior to metal fracture, Composite Structures 119 (2015) 777-786.

DOI: 10.1016/j.compstruct.2014.09.056

Google Scholar

[4] G. Caprino, G. Spataro, S. Del Luongo, Low-velocity impact behavior of fiberglass-aluminium laminates, Composites: Part A, 35 (2004) 605-616.

DOI: 10.1016/j.compositesa.2003.11.003

Google Scholar

[5] R. Marissen, ARALL (Aramidfaserversträkter Aluminiumschicht-Verbundwerkstoff) – Ein neuer Hybrid-Verbundwerkstoff mit besonderen Schwingfestigkeitseigenschaften, Zeitschrift für Materialkunde 17 (1983) 278-283.

DOI: 10.1002/mawe.19830140807

Google Scholar

[6] R. Alderliesten, J. Homan, Fatigue and danage tolerance issues of Glare in aircraft structures, International Journal of Fatigue 28 (2006) 1116-1123.

DOI: 10.1016/j.ijfatigue.2006.02.015

Google Scholar

[7] R. Alderliesten, C. Rans, R. Benedictus, The applicability of magnesium based Fibre Metal Laminates in aerospace structures, Composites Science and Technology 68 (2008) 2983-2993.

DOI: 10.1016/j.compscitech.2008.06.017

Google Scholar

[8] L.R. Le Bourlegat, C.A. Damato, D.F. da Silva, E.C. Botelho, L.C. Pardini, Processing and mechanical characterization of titanium-graphite hybrid laminates, Reinforced Plastics & Composites 29 (2010) 3392-3400.

DOI: 10.1177/0731684410377541

Google Scholar

[9] W. Westre et al., Titanium-Polymer Hybrid Laminates, US-Patent, US5866272 (1999).

Google Scholar

[10] D.A. Burianek, S.M. Spearing, Fatigue damage in titanium-graphite hybrid laminates, Composites Science and Technology 62 (2002) 607-617.

DOI: 10.1016/s0266-3538(02)00027-1

Google Scholar

[11] T. Sinmazçelik, E. Avcu, M. Özgür Bora, O. Çoban, A review: Fibre metal laminates, backround, bonding types and applied test methods, Materials and Design 32 (2011) 3671-3685.

DOI: 10.1016/j.matdes.2011.03.011

Google Scholar

[12] D. Nestler, Beitrag zum Thema Verbundwerkstoffe – Werkstoffverbunde, Status quo und Forschungsansätze, Habilitation TU Chemnitz, 2013 (published 2014).

Google Scholar

[13] A. Vlot, J.W. Gunnink, Fibre Metal Lamintes an introduction, Kluwer Academic Publ., (2001).

Google Scholar

[14] C.A.J.R. Vermeeren, An Historic Overview of the Development of Fibre Metal Laminates, Applied Composite Materials 10 (2003) 189-205.

Google Scholar

[15] B. Wielage, D. Nestler, H. Steger, L. Kroll, J. Tröltzsch, S. Nendel, CAPAAL and CAPET – new materials of high-strength, high-stiff hybrid laminates. In M. Fathi (Ed. ): Integrated Systems, Design and Technology 2010: Knowledge Transfer in New Technologies (2010).

DOI: 10.1007/978-3-642-17384-4_3

Google Scholar

[16] D. Nestler, H. Steger, S. Nendel, J. Tröltzsch, L. Kroll, B. Wielage, CAPAAL® - Optimierung eines innovativen Hybridlaminates, Tagungsband zum 15. Werkstofftechnischen Kolloquium, Schriftenreihe Werkstoffe und werkstofftechnische Anwendungen, 47 (2012).

Google Scholar

[17] D. Nestler, H. Jung, B. Wielage, S. Nendel, J. Tröltzsch, L. Kroll, Innovative Hochleistungs-Hybridlaminate mit variablen Faserkomponenten, 19. Symposium Verbundwerkstoffe und Werkstoffverbunde in Karlsruhe 03. – 05. Juli 2013, in: A. Wanner, K.A. Weidenmann (Eds. ): Tagungsband 19. Symposium Verbundwerkstoffe und Werkstoffverbunde, (2013).

DOI: 10.1002/9783527609017.ch150

Google Scholar

[18] D. Nestler, H. Jung, S. Arnold, L. Kroll, S. Nendel, B. Wielage, Thermoplastische Hybridlaminate mit variabler Metallkomponente, Tagungsband zum 16. Werkstofftechnischen Kolloquium, Schriftenreihe Werkstoffe und werkstofftechnische Anwendungen 50 (2013).

DOI: 10.1002/mawe.201400259

Google Scholar

[19] Information on www. auerhammer. com/de/produkte/metallbaender/einschmelz_und_aus-dehnungs-legierung. html, Stand Sept. (2013).

Google Scholar

[20] N.N.: Productinformation, Metallbänder: Einschmelz- und Ausdehnungs-legierungen, 10/2009 auf www. auerhammer. com (Stand Sept. 2013).

Google Scholar

[21] Measurements, Fa. Auerhammer, Aue, 2014 (not published).

Google Scholar