Parameter Fluctuations in Multiple Patterned Deca-nm Scaled CMOS Structures

Article Preview

Abstract:

Multiple Patterning Seems to Be One of the Most Promising Solutions for the Gap between the 193 Nm Immersion Lithography and the 13.5 Nm EUV Lithography for Industrial Manufacturing of Ultra Large Scaled Integrated CMOS Circuits [1]. the Used Techniques in this Paper Lead to an Excellent Homogeneity and Uniformity of the Channel Length and Width which Enables a Fundamental Statistical Analysis of the Electrical Transistor Parameters. the Process Flow Has Been Optimized to Minimize the Active Channel Area and to Achieve a Sufficient Yield for a Trustworthy Statistical Analysis. while the Channel Length Is Defined by a Single Deposition- and Etchback Technique the Active Area Is Defined by a Composition of Multiple Spacers that Lead to a Diffusion Stop Barrier. the Statistical Analysis of these Devices Shows Dramatically Increasing Fluctuations of the Threshold Voltage if the Device Dimensions Are Decreased.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

157-163

Citation:

Online since:

February 2012

Export:

Price:

[1] G. Tressler, Enabling MLC Flash SSD In Enterprise Storage, Flash Memory Summit, Santa Clara (2010).

Google Scholar

[2] Semiconductor Industry Association: International Technology Roadmap for Semiconductors, 2010 update, http: /public. itrs. net.

Google Scholar

[3] J. Appenzeller, J. Knoch, M. T. Björk, H. Riel, H. Schmid und W. Riess, Toward Nanowire Electronics, IEEE Transactions on Electron Devices, Vol. 55, No. 11, November 2008, pp.2827-2845.

DOI: 10.1109/ted.2008.2008011

Google Scholar

[4] K. R. Lakshmikumar, R. A. Hadaway, M. A. Copeland, Characterization and Modeling of Mismatch in MOS Transistors for Precision Analog Design, IEEE Journal of Solid-State Circuits, Vol. SC-21, No. 6, December 1986, p.1057 – 1066.

DOI: 10.1109/jssc.1986.1052648

Google Scholar

[5] A. Asenov, G. Slavcheva, A. R. Brown, J. H. Davies, S. Saini, Quantum Mechanical Enhancement of the Random Dopant Induced Threshold Voltage Fluctuations and Lowering in Sub 0. 1 micron MOSFETs, International Electron Device Meeting IEDM, Technical Digest, 1999, p.535.

DOI: 10.1109/iedm.1999.824210

Google Scholar

[6] J. T. Horstmann, U. Hilleringmann, K. F. Goser, Matching Analysis of Deposition Defined 50 nm MOSFET's, IEEE Transactions on Electron Devices, Vol. 45, No. 1, January 1998, pp.299-306.

DOI: 10.1109/16.658845

Google Scholar

[7] J. T. Horstmann, K. T. Kallis and H. L. Fiedler, Experimental Threshold Voltage Fluctuations of 30 nm-NMOS-Transistors Manufactured by a Lithography Independent Structure Definition Process, Proceedings of the 34th International Conference on Micro and Nanoengineering (MNE'08), Athens, Greece 2009, 1054-1056.

DOI: 10.1016/j.mee.2008.11.048

Google Scholar

[8] K. T. Kallis, J. T. Horstmann and H. L. Fiedler, Lithography Independent High Accuracy Fabrication and Characterization of Next Generation Nano-MOS-Transistors with L=25 nm and W=75 nm, Proceedings of the 32nd International Conference on Micro and Nanoengineering (MNE'06), Barcelona, Spain 2007, pp.1484-1487.

DOI: 10.1016/j.mee.2007.01.224

Google Scholar

[9] K. T. Kallis, L. O. Keller and H. L. Fiedler, An advanced LOCOS-Process for the Sub-50 nm-Region using Low-Stress PECVD-Silicon Nitrides, Journal of Nano Research, Volume 6 (2009), pp.23-27.

DOI: 10.4028/www.scientific.net/jnanor.6.23

Google Scholar

[10] A. Asenov, A. R. Brown, J. H. Davies, S. Kaya, G. Slavcheva, Simulation of Intrinsic Parameter Fluctuations in Decananometer and Nanometer-Scale MOSFETs, IEEE Transactions on Electron Devices, Vol. 50, No. 9, September 2003, p.1837 – 1852.

DOI: 10.1109/ted.2003.815862

Google Scholar

[11] O. Weber et al, High Immunity to Threshold Voltage Variabilty in Undoped Ultra-Thin FDSOI MOSFETs and its Physical Understanding, IEDM, 15 - 17 Dec. (2008).

Google Scholar