Study of Creep Damage in a 10.86% Cr Heat Resistant Steel using Synchrotron X-Ray Microtomography

Article Preview

Abstract:

Synchrotron X-ray microtomography(SR-μCT) scans have been carried out on sample coupons extracted from the fracture specimens of a 10.86% Cr heat resistant steel exposed to crep deformation at 873K over stresses of 120, 150, and 180 MPa. The 3D cavitation characteristics in terms of void volume fraction, numbwer density and size distribution as a function of the applied stress has been determined by quantitative analysis of the reconstructed tomograohy slice datasets. The relationship between heterogenous spatial distribution of creep voids and variation in rupture life has been exploited in terms of microstructural sites during the onset of creep embrittlement.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

476-483

Citation:

Online since:

September 2013

Export:

Price:

[1] M. E. Kassner, Fundamentals of Creep in Metals and Alloys, Second ed., Elsevier, UK, (2009).

Google Scholar

[2] F. Abe, Precipitate design for creep strengthening of 9% Cr tempered martensitic steel for ultra supercritical power plants, Sci. Technol. Adv. Mater. 9 (2008) 1-15.

DOI: 10.1088/1468-6996/9/1/013002

Google Scholar

[3] A. Aghajani, C. H. Sommen, G. Eggler, On the effect of long term creep on the microstructure of a 12% Chromium tempered martensitic ferritic steel, Acta. Mater, 57 (2009) 5093-5106.

DOI: 10.1016/j.actamat.2009.07.010

Google Scholar

[4] K. Fujiyama, K. Mori, T. Matsunaga, H. Kimachi, T. Saito, T. Hino, R. Ishhii, Creep damage assessment of high chromium heat resistant steels and weldments, Mater. Sci. Eng. A501-511 (2009) 195-201.

DOI: 10.1016/j.msea.2008.08.045

Google Scholar

[5] S. R. Stock, MicroComputed Tomography – Metholodology and Applications, CRC Press USA (2009).

Google Scholar

[6] H. Toda, F. Tomizato, M. Ziessmann, Y. Besel, K. Uesugi, A. Takeuchi, Y. Suzuki, M. Kobayashi, B. -F. Foit, High resolution observation of steel using X-ray tomography technique, ISIJ 52 (2012) 517-523.

DOI: 10.2355/isijinternational.52.516

Google Scholar

[7] K. S. Cheong, K. J. Stevens, Y. Suzuki, K. Uesugi, A. Takeuchi, The effects of microstructure on creep behavior – A study through synchrotron X-ray microtomography, Mat. Sci. Eng. A513-514 (2009) 222-227.

DOI: 10.1016/j.msea.2009.02.021

Google Scholar

[8] F. Sket, K. Dzieciol, A. Borbely, A. R. Pyzalla, K. Maile, R. Scheck, Microtomographic investigation of damage in E911 steel after long term creep, Mater. Sci. Eng. A528 (2010) 103-111.

DOI: 10.1016/j.msea.2010.07.029

Google Scholar

[9] R. Wu, R. Sanström, Creep cavity nucleation and growth in 12Cr-Mo-V steel, Mater. Sci. Tech. 11 (1995) 579-588.

DOI: 10.1179/mst.1995.11.6.579

Google Scholar

[10] G. Eggeler, J. C. Earthman, N. Nilsvang, B. Ilshner, Microstructure study of creep rupture in a 12% chromium ferritic steel, Acta. Metall. 37 (1989) 49-59.

DOI: 10.1016/0001-6160(89)90265-4

Google Scholar