Skip to main content
Log in

Heterogeneous TRP Channel Model of a Chordotonal Neuron Might Explain Drosophila Hearing

  • Published:
Journal of the Korean Physical Society Aims and scope Submit manuscript

Abstract

Here, we propose a model for the Drosophila chordotonal neurons where the axoneme is an actively contracting wire, regulated by the calcium ion concentration. To date, which of Nanchung-inactive and no mechanoreceptor potential C channels are transient receptor potential channels (TRP) in chordotonal sensory cilia is still not clear. Our theory explains previous experimental findings, including non-linear gating compliance and spontaneous oscillation of the antenna. It also explains that neural signaling takes place only at amplitudes of mechanical stimulation much higher than those generating active amplification, which has not been explained so far within the conventional single-type TRP channel model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Howard and A. Hudspeth, Neuron 1, 189 (1988).

    Article  Google Scholar 

  2. B. Nadrowski, P. Martin and F. Jülicher, Proc. Natl. Acad. Sci. U.S.A. 101, 12195 (2004).

    Article  ADS  Google Scholar 

  3. C. Köppl, G. A. Manley, A. N. Popper and R. R. Fay, Insights from Comparative Hearing Research (Springer, New York, 2014), p. 13.

    Book  Google Scholar 

  4. A. Kamikouchi, T. Shimada and K. Ito, J. Compar. Neurology 499, 317 (2006).

    Article  Google Scholar 

  5. J. T. Albert and M. C. Göpfert, Curr. Opinion Neurobio. 34, 79 (2015).

    Article  Google Scholar 

  6. W. S. Lee et al., J. Korean Phys. Soc. 73, 1225 (2018).

    Article  ADS  Google Scholar 

  7. J. Kim et al., Nature 424, 81 (2003).

    Article  ADS  Google Scholar 

  8. Z. Gong et al., J. Neurosci. 24, 9059 (2004).

    Article  Google Scholar 

  9. M. C. Göopfert, J. T. Albert, B. Nadrowski and A. Kamikouchi, Nat. Neurosci. 9, 999 (2006).

    Article  Google Scholar 

  10. R. Walker, A. Willingham and C. Zuker, Science 2877, 2229 (2000).

    Article  ADS  Google Scholar 

  11. T. Effertz et al., Nat. Neurosci. 15, 1198 (2012).

    Article  Google Scholar 

  12. Z. Yan et al., Nature 493, 221(2013).

    Article  ADS  Google Scholar 

  13. J. Lee, S. Moon, Y. Cha and Y. D. Chung, PLoS One 5, e11012 (2010).

    Article  ADS  Google Scholar 

  14. D. F. Eberl, R. W. Hardy and M. J. Kernan, J. Neurosci. 20, 5981 (2000).

    Article  Google Scholar 

  15. D. Zanini and M. C. Göopfert, in Mammalian Transient Receptor Potential (TRP) Cation Channels (Heidelberg: Springer, Berlin, 2014), p. 899.

    Book  Google Scholar 

  16. T. Effertz, R. Wiek and M. C. Göpfert, Curr. Biol. 21, 592 (2011).

    Article  Google Scholar 

  17. B. P. Lehnert et al., Neuron 77, 115 (2013).

    Article  Google Scholar 

  18. A. Nesterov et al., Neuron 86, 665 (2015).

    Article  Google Scholar 

  19. B. Warren and T. Matheson, J. Neurosci. 38 3741 (2018).

    Article  Google Scholar 

  20. A. Hudspeth, Y. Choe, A. Mehta and P. Martin, Proc. Natl. Acad. Sci. U.S.A. 97, 11765 (2000).

    Article  ADS  Google Scholar 

  21. P. G. Gillespie and R. G. Walker, Nature 413, 194 (2001).

    Article  ADS  Google Scholar 

  22. L. H. Field and T. Matheson, In Advances in Insect Physiology (Academic Press, Amsterdam, 1998), Vol. 27, pp. 1–228.

    Google Scholar 

  23. S. H. Strogatz, Nonlinear Dynamics and Chaos: with Applications to Physics, Biology, Chemistry and Engineering (CRC Press, Boca Raton, 2018).

    Book  Google Scholar 

  24. M. Göpfert and D. Robert, Proc. Natl. Acad. Sci. U.S.A. 100, 5514 (2003).

    Article  ADS  Google Scholar 

  25. E. F. Smith, Molecul. Biol. Cell 13, 3303 (2002).

    Article  Google Scholar 

  26. J. T. Albert, B. Nadrowski and M. C. Göopfert, Curr. Biol. 17, 1000 (2007).

    Article  Google Scholar 

  27. B. Nadrowski, J. T. Albert and M. C. Göpfert, Curr. Biol. 18, 1365 (2008).

    Article  Google Scholar 

  28. K-H. Ahn, J. Royal Soc. Interface 10, 20130525 (2013).

    Article  Google Scholar 

  29. R. Basto and W. F. Marshall, Methods in Cilia and Flagella (Academic Press, Amsterdam, 2015), Vol. 127.

    Google Scholar 

  30. S. Karak et al., Sci. Rep. 5, 17085 (2015).

    Article  ADS  Google Scholar 

  31. D. Zanini and M. C. Göpfert, Curr. Biol. 23, R349 (2013).

    Article  Google Scholar 

Download references

Acknowledgments

We thank Y. D. Chung, J. Lee, and D. Robert for helpful discussion. WSL and KHA were supported by a National Research Foundation of Korea (NRF) grant funded by the Korea ministry of science, ICT and future planning (NRF2017R1A2B3010002) and by Chungnam National University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kang-Hun Ahn.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, W.S., Ahn, KH. Heterogeneous TRP Channel Model of a Chordotonal Neuron Might Explain Drosophila Hearing. J. Korean Phys. Soc. 76, 118–124 (2020). https://doi.org/10.3938/jkps.76.118

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3938/jkps.76.118

Keywords

Navigation