Skip to main content
Log in

Investigation of the Dirac Equation by Using the Conformable Fractional Derivative

  • Published:
Journal of the Korean Physical Society Aims and scope Submit manuscript

Abstract

In this paper,the Dirac equation is constructed using the conformable fractional derivative so that in its limit for the fractional parameter, the normal version is recovered. Then, the Cornell potential is considered as the interaction of the system. In this case, the wave function and the energy eigenvalue equation are derived with the aim of the bi-confluent Heun functions. use of the conformable fractional derivative is proven to lead to a branching treatment for the energy of the system. Such a treatment is obvious for small values of the fractional parameter, and a united value as the fractional parameter approaches unity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. S. Miller and B. Ross, An Introduction to the Fractional Integrals and Derivatives-Theory and Applications (Wiley, New York, 1993).

    Google Scholar 

  2. I. Podlubny, Fractional Differential Equations (Academic, San Diego, CA, 1999).

    MATH  Google Scholar 

  3. A. A. Kilbas, H. M. Srivastava and J. J. Trujillo, Theory and Applications of Fractional Differential Equations (Elsevier, Amsterdam, 2006).

    MATH  Google Scholar 

  4. R. Hilfer, Applications of Fractional Calculus in Physics (World Scientific, Singapore, 2000).

    Book  MATH  Google Scholar 

  5. B. J. West, M. Bologna and P. Grigolini, Physics of Fractal Operators (Springer, New York, 2003).

    Book  Google Scholar 

  6. R. L. Magin, Fractional Calculus in Bioengineering (Begell House Publisher, CT, 2006).

    Google Scholar 

  7. R. Metzler and J. Klafter, Phys. Rep. 39, 1 (2000).

    Article  ADS  Google Scholar 

  8. R. R. Nigmatullin and A. L. Mehaute, J. Non-Cryst. Sol. 351, 2888 (2005).

    Article  ADS  Google Scholar 

  9. I. Podlubny, Fract. Calculus Appl. Anal. 5, 367 (2002).

    MathSciNet  Google Scholar 

  10. M. Klimek, Czech. J. Phys. 51, 1348 (2001).

    Article  ADS  Google Scholar 

  11. M. Klimek, Czech. J. Phys. 52, 1247 (2002).

    Article  ADS  Google Scholar 

  12. M. Klimek, Czech. J. Phys. 55, 1447 (2005).

    Article  ADS  Google Scholar 

  13. O. P. Agrawal, J. Math. Anal. Appl. 272, 368 (2002).

    Article  MathSciNet  Google Scholar 

  14. A. Gaies and A. El-Akrmi, Phys. Scr. 70, 7 (2004).

    Article  ADS  Google Scholar 

  15. O. P. Agrawal, J. Vib. Control 13, 1217 (2007).

    Article  MathSciNet  Google Scholar 

  16. F. Riewe, Phys. Rev. E 53, 1890 (1996).

    Article  ADS  MathSciNet  Google Scholar 

  17. F. Riewe, Phys. Rev. E 55, 3581 (1997).

    Article  ADS  MathSciNet  Google Scholar 

  18. D. Baleanu and T. Avkar, Nouvo Cimento B 119, 73 (2004).

    ADS  Google Scholar 

  19. E. Rabei, K. I. Nawafleh, R. S. Hijjawi, S. I. Muslih and D. Baleanu, J. Math. Anal. Appl. 327, 891 (2007).

    Article  MathSciNet  Google Scholar 

  20. S. I. Muslih and D. Baleanu, J. Math. Anal. Appl. 304, 599 (2005).

    Article  MathSciNet  Google Scholar 

  21. D. Baleanu and S. Muslih, Phys. Scr. 72, 119 (2005).

    Article  ADS  Google Scholar 

  22. N. Heymans and I. Podlubny, Rheol. Acta 45, 765 (2006).

    Article  Google Scholar 

  23. P. A. M. Dirac, Proc. R. Soc. Lond. 117, 610 (1928).

    Article  ADS  Google Scholar 

  24. A. N. Ikot, H. Hassanabadi and T. M. Abbey, Commun. Theor. Phys. 64, 637 (2015).

    Article  Google Scholar 

  25. H. Hassanabadi, S. S. Hosseini and S. Zarrinkamar, Int. J. Theor. Phys. 54, 251 (2015).

    Article  Google Scholar 

  26. H. Sobhani, W. S. Chung and H. Hassanabadi, Adv. High Energy Phys. 2017, 9530874 (2017).

    Article  Google Scholar 

  27. H. Sobhani and H. Hassanabadi, Commun. Theor. Phys. 64, 263 (2015).

    Article  ADS  Google Scholar 

  28. H. Sobhani and H. Hassanabadi, Commun. Theor. Phys. 64, 543 (2015).

    Article  Google Scholar 

  29. F. S. Mozaffari, H. Hassanabadi, W. S. Chung and H. Sobhani, On The Conformable Fractional Quantum Mechanics accepted for publishing in J. Korean Phys. Soc. (2017).

    Google Scholar 

  30. S. H. Dong and Z. Q. Ma, Phys. Lett. A 312, 78 (2003).

    Article  ADS  MathSciNet  Google Scholar 

  31. S. H. Dong, G. H. Sun and D. Popov, J. Math. Phys. 44, 4467 (2003).

    Article  ADS  MathSciNet  Google Scholar 

  32. S. Dong, Q. Fang, B. J. Falaye, G. H. Sun, C. Y. Marquez and S. H. Dong, Mod. Phys. Lett. A 31, 1650017 (2016).

    Article  ADS  Google Scholar 

  33. G. H. Sun, S. H. Dong, K. D. Launey, T. Dytrych and J. P. Draayer, Int. J. Quan. Chem. 115, 891 (2015).

    Article  Google Scholar 

  34. S. Dong, G. H. Sun, B. J. Falaye and S. H. Dong, Eur. Phys. J. Plus 131, 176 (2016).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. S. Mozaffari.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mozaffari, F.S., Hassanabadi, H., Sobhani, H. et al. Investigation of the Dirac Equation by Using the Conformable Fractional Derivative. J. Korean Phys. Soc. 72, 987–990 (2018). https://doi.org/10.3938/jkps.72.987

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3938/jkps.72.987

Keywords

Navigation