Skip to main content
Log in

Computational characterizations on the grain-size-dependent properties of polycrystalline nanomaterials

  • Published:
Journal of the Korean Physical Society Aims and scope Submit manuscript

Abstract

The microstructures of real nanomaterials can be quite complex with variety of grain sizes aligned in different crystal orientations and structural defects possibly created in a fabrication process. Material properties of these polycrystalline materials are generally known strongly dependent on the nanoscale morphology. First principle calculations based on the density functional theory need to be employed in these atomic characterizations; however, it may not be suitable for the polycrystalline nanomaterials for which large number of atoms is required in the simulation model. Instead, a mesoscale computer simulation scheme is employed to investigate these morphology-dependent mechanical properties of polycrystalline materials. We demonstrated the Voronoi construction of various polycrystalline atomic models such as two-dimensional graphene and three-dimensional silicon carbide. General behavior of the mechanical characteristics of the bulk nanostructured silicon carbide (SiC) was addressed, particularly the contribution of grain sizes. From this study, the optimal grain size was determined near 10 nm under tensile and compressive deformations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Yip, Nature 391, 532 (1998).

    Article  ADS  Google Scholar 

  2. R. W. Siegel and G. E. Fougere, Nanostructured Mater. 6, 205 (1995)

    Article  Google Scholar 

  3. R. W. Siegel, J. Phys. Chem. Solids 55, 1097 (1994).

    Article  ADS  Google Scholar 

  4. E. O. Hall, Proc. Phys. Soc. London B 64, 747 (1951).

    Article  ADS  Google Scholar 

  5. N. Petch, J. Iron Steel Inst. 174, 25 (1953).

    Google Scholar 

  6. J. Schiotz, F. D. D. Tolla and K. W. Jacobsen, Nature 391, 561 (1998)

    Article  ADS  Google Scholar 

  7. J. Schiotz and K. W. Jacobsen, Science 301, 1357 (2003).

    Article  ADS  Google Scholar 

  8. H. van Swygenhoven, Science 296, 66 (2002).

    Article  Google Scholar 

  9. Y. Choi, Y. Park and S. Hyun, Phys. Lett. A 376, 758 (2012).

    Article  ADS  Google Scholar 

  10. I. Szlufarska, A. Nakano and P. Vashista, Science 309, 911 (2005).

    Article  ADS  Google Scholar 

  11. D. W. Richerson, Modern Ceramic Engineering (Taylor & Francis, Boca Raton, 2006).

    Google Scholar 

  12. Q. Lu, J. Hu, K. Tang, Y. Qian, G. Zhou, X. Liu and J. Zhu, Appl. Phys. Lett. 75, 507 (1999).

    Article  ADS  Google Scholar 

  13. L. V. Gibiansky and S. Torquato, Phys. Rev. Lett. 71, 2927 (1993).

    Article  ADS  Google Scholar 

  14. S. Kumar, S. K. Kurtz, J. R. Banavar and M. G. Sharma, J. Stat. Phys. 67, 523 (1992).

  15. H. Goldstein, Classical Mechanics, 2nd ed. (Addison-Wesley, Massachusetts, 1980).

    MATH  Google Scholar 

  16. S. J. Plimpton, J. Comp. Phys. 117, 1 (1995).

    Article  MATH  ADS  Google Scholar 

  17. S. Nosé, Mol. Phys. 52, 255 (1984)

    Article  ADS  Google Scholar 

  18. S. Nosé, J. Chem. Phys. 81, 511 (1984).

    Article  ADS  Google Scholar 

  19. W. G. Hoover, Phys. Rev. A 34, 2499 (1986).

    Article  MathSciNet  ADS  Google Scholar 

  20. J. Tersoff, Phys. Rev. B 37, 6991 (1988)

    Article  ADS  Google Scholar 

  21. J. Tersoff, Phys. Rev. B 39, 5566 (1989).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sangil Hyun.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hyun, S., Park, Y. & Kim, Ht. Computational characterizations on the grain-size-dependent properties of polycrystalline nanomaterials. Journal of the Korean Physical Society 67, 2105–2111 (2015). https://doi.org/10.3938/jkps.67.2105

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3938/jkps.67.2105

Keywords

Navigation