Skip to main content
Log in

Effect of van der Waals interaction on the structural and cohesive properties of black phosphorus

  • Published:
Journal of the Korean Physical Society Aims and scope Submit manuscript

Abstract

We investigated the structural and the binding properties of black phosphorus (black-P) by employing density functional theory (DFT) calculations in combination with various implementations of the van der Waals (vdW) interaction. Both the binding energy curve of the two isolated puckered layers and the equation of states of the bulk black-P suggest that the conventional generalized gradient approximation (GGA) functional is incapable of describing the interlayer vdW interaction. From the comparison of the seven different vdW implementations, the appropriate vdW schemes in describing layer-structured black-P are found to be either the Grimme’s dispersion correction (DFT-D2) or the optB86b vdW denisty-functional approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. M. Park and H. J. Shon, Adv. Mater. 19, 2465 (2007).

    Article  Google Scholar 

  2. A. Morita, Appl. Phys. A 39, 227 (1986).

    Article  ADS  Google Scholar 

  3. H. G. von Schnering, Angew. Chem. Int. Ed. Engl. 20, 33 (1981).

    Article  Google Scholar 

  4. A. Simon, H. Borrmann and J. Horakh, Chem. Ber-Recl. 130, 1235 (1997).

    Article  Google Scholar 

  5. H. Okudera, R. E. Dinnebire and A. Simon, Z. Kristallogr. 220, 259 (2005).

    Article  Google Scholar 

  6. M. Scheer, G. Balázs and A. Seitz, Chem. Rev. 110, 4236 (2010), and references therein.

    Article  Google Scholar 

  7. P. Hohenberg and W. Kohn, Phys. Rev. 136, B864 (1964).

    Article  ADS  MathSciNet  Google Scholar 

  8. W. Kohn and L. J. Sham, Phys. Rev. 140, B1133 (1965).

    Article  ADS  MathSciNet  Google Scholar 

  9. M. Elstner, P. Hobza, T. Frauenheim, S. Suhai and E. Kaxiras, J. Chem. Phys. 114, 5149 (2001).

    Article  ADS  Google Scholar 

  10. M. Dion, H. Rydberg, E. Schröder, D. C. Langreth and B. I. Lundqvist, Phys. Rev. Lett. 92, 246401 (2004).

    Article  ADS  Google Scholar 

  11. O. A. von Lilienfeld, I. Tavernelli and U. Rothlisberger, Phys. Rev. Lett. 93, 153004 (2004).

    Article  ADS  Google Scholar 

  12. J. G. Ángyán, I. C. Gerber, A. Savin and J. Toulouse, Phys. Rev. A 72, 012510 (2005).

    Article  ADS  Google Scholar 

  13. A. D. Becke and E. R. Johnson, J. Chem. Phys. 122, 154104 (2005).

    Article  ADS  Google Scholar 

  14. G. Román-Pérez and J. M. Soler, Phys. Rev. Lett. 103, 096102 (2009).

    Article  ADS  Google Scholar 

  15. K. Lee, É. D. Murray, L. Kong, B. I. Undqvist and D. C. Langreth, Phys. Rev. B 82, 0081101(R) (2010).

    Article  ADS  Google Scholar 

  16. J. Klimeš, D. R. Bowler and A. Michaelides, J. Phys. Condens. Matter 22, 022201 (2010).

    Article  ADS  Google Scholar 

  17. J. Klimeš, D. R. Bowler and A. Michaelides, Phys. Rev. B 83, 195131 (2011).

    Article  ADS  Google Scholar 

  18. S. Grimme, J. Comp. Chem. 25, 1463 (2004).

    Article  Google Scholar 

  19. S. Grimme, J. Comp. Chem. 27, 1787 (2006).

    Article  Google Scholar 

  20. T. Bučko, J. Hafner, S. Lebèfue, and J. G. Ángyán, J. Phys. Chem. A 114, 11814 (2010).

    Article  Google Scholar 

  21. S. Grimme, J. Antony, S. Ehrlich and H. Krieg, J. Chem. Phys. 132, 154104 (2010).

    Article  ADS  Google Scholar 

  22. A. Tkatchenko and M. Scheffler, Phys. Rev. Lett. 102, 073005 (2009).

    Article  ADS  Google Scholar 

  23. J. C. Slater and J. G. Kirkwood, Phys. Rev. 37, 682 (1931).

    Article  ADS  Google Scholar 

  24. J. Park, B. D. Yu and S. Hong, J. Korean Phys. Soc. 59, 196 (2011).

    Article  Google Scholar 

  25. S. D. Chakarova-Käck, E. Schröder, B. I. Lundqvist and D. C. Langreth, Phys. Rev. Lett. 96, 146107 (2006).

    Article  ADS  Google Scholar 

  26. M. Hasegawa and K. Nishidate, Phys. Rev. B 70, 205431 (2004).

    Article  ADS  Google Scholar 

  27. J. Y. Noh and H. Kim, J. Korean Phys. Soc. 60, 410 (2012).

    Article  ADS  Google Scholar 

  28. Y. Takao, H. Asahina and A. Morita, J. Phys. Soc. Jpn. 50, 3362 (1981).

    Article  ADS  Google Scholar 

  29. H. Asahina, K. Shindo and A. Morita, J. Phys. Soc. Jpn. 51, 1193 (1982).

    Article  ADS  Google Scholar 

  30. K. J. Chang and M. L. Cohen, Phys. Rev. B 33, 6177 (1986).

    Article  ADS  Google Scholar 

  31. Y. Du, C. Ouyang, S. Shi and M. Lei, J. Appl. Phys. 107, 093718 (2010).

    Article  ADS  Google Scholar 

  32. Ø. Prytz and E. Flage-Larsen, J. Phys.: Condens. Matter 22, 015502 (2010).

    ADS  Google Scholar 

  33. S. Appalakondaiah, G. Vaitheeswaran, S. Lebègue, N. E. Christensen and A. Svane, Phys. Rev. B 86, 035105 (2012).

    Article  ADS  Google Scholar 

  34. J. P. Perdew, J. A. Chevary, S. H. Vosko, K. A. Jackson, M. R. Pederson, D. J. Singh and C. Fiolhais, Phys. Rev. B 46, 6671 (1992).

    Article  ADS  Google Scholar 

  35. A. Brown and S. Rundqvist, Acta Cryst. 19, 684 (1965).

    Article  Google Scholar 

  36. L. Cartz, S. R. Srinivasa, R. J. Riedner, J. D. Jorgensen and T. G. Worlton, J. Chem. Phys. 71, 1718 (1979).

    Article  ADS  Google Scholar 

  37. J. Heyd, G. E. Scuseria, and M. Ernzerhof, J. Chem. Phys. 118, 8207 (2003).

    Article  ADS  Google Scholar 

  38. C. Adamo and V. Barone, J. Chem. Phys. 110, 6158 (1999).

    Article  ADS  Google Scholar 

  39. G. Kresse and J. Hafner, Phys. Rev. B 47, 558 (1993).

    Article  ADS  Google Scholar 

  40. G. Kresse and J. Hafner, Phys. Rev. B 49, 14251 (1994).

    Article  ADS  Google Scholar 

  41. G. Kresse and J. Furthmüller, Phys. Rev. B 54, 11169 (1996).

    Article  ADS  Google Scholar 

  42. G. Kresse and J. Furthmüller, Comp. Mater. Sci. 6, 15 (1996).

    Article  Google Scholar 

  43. P. E. Blöchl, Phys. Rev. B 50, 17953 (1994).

    Article  ADS  Google Scholar 

  44. G. Kresse and D. Joubert, Phys. Rev. B 59, 1758 (1999).

    Article  ADS  Google Scholar 

  45. D. M. Ceperley and B. J. Alder, Phys. Rev. Lett. 45, 566 (1980).

    Article  ADS  Google Scholar 

  46. J. P. Perdew, K. Burke and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996).

    Article  ADS  Google Scholar 

  47. H. J. Monkhorst and J. D. Pack, Phys. Rev. B 13, 5188 (1976).

    Article  ADS  MathSciNet  Google Scholar 

  48. T. Kikegawa and H. Kwasaki, Acta Cryst. B 39, 158 (1983).

    Article  Google Scholar 

  49. W. A. Crichton, M. Mezouar, G. Monaco and S. Falconi, Powder Diffr. 18, 155 (2003).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hanchul Kim.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, H. Effect of van der Waals interaction on the structural and cohesive properties of black phosphorus. Journal of the Korean Physical Society 64, 547–553 (2014). https://doi.org/10.3938/jkps.64.547

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3938/jkps.64.547

Keywords

Navigation