Research article Special Issues

Study on seafloor hydrothermal systems circulation flow and heat transfer characteristics

  • Received: 20 February 2022 Revised: 24 March 2022 Accepted: 25 March 2022 Published: 15 April 2022
  • In this work, the numerical simulation study of the hydrothermal flow and heat transfer process in the porous rock under 30 MPa pressure was developed. The flow and heat transfer characteristics of hydrothermal in rocks with different porosities are studied by changing the porosity of the rock. The simulation results show that the average flow velocity decreases and the average temperature increases when the porosity decreases. The velocity field and temperature field are coupled due to the nonlinear thermophysical properties of hydrothermal. The velocity field and temperature field have strongly interacted in the range of 400–450 ℃ and the effect of temperature on velocity is gradually diminishing outside the range. Most of the fluid will be "squeezed" into the crevice and the average velocity is almost three times the no-creviced case when a crevice is present. The existence of the crevice makes the total heat flux decrease from an overall perspective, and the crevice makes a large temperature gradient at the entrance and export of the crevice from a local perspective. These results provide theoretical support for the utilization of submarine hydrothermal fluid shallow circulation heat energy.

    Citation: Yi Ren, Guolei Zhang, Longbin Yang, Yanwei Hu, Xiaojing Nie, Zhibin Jiang, Dawei Wang, Zhifan Wu. Study on seafloor hydrothermal systems circulation flow and heat transfer characteristics[J]. Mathematical Biosciences and Engineering, 2022, 19(6): 6186-6203. doi: 10.3934/mbe.2022289

    Related Papers:

  • In this work, the numerical simulation study of the hydrothermal flow and heat transfer process in the porous rock under 30 MPa pressure was developed. The flow and heat transfer characteristics of hydrothermal in rocks with different porosities are studied by changing the porosity of the rock. The simulation results show that the average flow velocity decreases and the average temperature increases when the porosity decreases. The velocity field and temperature field are coupled due to the nonlinear thermophysical properties of hydrothermal. The velocity field and temperature field have strongly interacted in the range of 400–450 ℃ and the effect of temperature on velocity is gradually diminishing outside the range. Most of the fluid will be "squeezed" into the crevice and the average velocity is almost three times the no-creviced case when a crevice is present. The existence of the crevice makes the total heat flux decrease from an overall perspective, and the crevice makes a large temperature gradient at the entrance and export of the crevice from a local perspective. These results provide theoretical support for the utilization of submarine hydrothermal fluid shallow circulation heat energy.



    加载中


    [1] J. W. Elder, Physical processes in geothermal areas, Terr. Heat Flow, 8 (1965), 211-239. https://doi.org/10.1029/GM008p0211 doi: 10.1029/GM008p0211
    [2] J. B. Corliss, J. Dymond, L. I. Gordon, J. M. Edmond, R. P. Herzen, R. D. Ballard, et al., Submarine thermal springs on the galapagos rift, Science, 203 (1979), 1073-1083. https://doi.org/10.1126/science.203.4385.1073 doi: 10.1126/science.203.4385.1073
    [3] A. Schultz, J. R. Delaney, R. E. McDuff, On the partitioning of heat flux between diffuse and point source seafloor venting, J. Geophys. Res.: Solid Earth, 97 (1992), 12299-12314. https://doi.org/10.1029/92JB00889 doi: 10.1029/92JB00889
    [4] C. A. Stein, S. Stein, Constraints on hydrothermal heat flux through the oceanic lithosphere from global heat flow, J. Geophys. Res.: Solid Earth, 99 (1994), 3081-3095. https://doi.org/10.1029/93JB02222 doi: 10.1029/93JB02222
    [5] R. P. Lowell, P. A. Rona, R. P. Herzen, Seafloor hydrothermal systems, J. Geophys. Res.: Solid Earth, 100 (1995), 327-352. https://doi.org/10.1029/94JB02222 doi: 10.1029/94JB02222
    [6] P. C. Lichtner, Continuum model for simultaneous chemical reactions and mass transport in hydrothermal systems, Geochim. Cosmochim. Acta, 49 (1985), 779-800. https://doi.org/10.1016/0016-7037(85)90172-3 doi: 10.1016/0016-7037(85)90172-3
    [7] E. E. Davis, D. S. Chapman, M. J. Mottl, W. J. Bentkows, K. Dadey, C. Forster, et al., FlankFlux: an experiment to study the nature of hydrothermal circulation in young oceanic crust, Can. J. Earth Sci., 29 (1992), 925-952. https://doi.org/10.1139/e92-078 doi: 10.1139/e92-078
    [8] J. U. Bessler, L. Smith, E. E. Davis, Hydrologic and thermal conditions at a sediment/basalt interface: Implications for interpretation of field measurements at Middle Valley, Proc. Ocean Drill. Program: Sci. Results, 139 (1994), 667-675. https://doi.org/10.2973/odp.proc.sr.139.253.1994 doi: 10.2973/odp.proc.sr.139.253.1994
    [9] W. L. Taylor, D. D. Pollard, A. Aydin, Fluid flow in discrete joint sets: Field observations and numerical simulations, J. Geophys. Res.: Solid Earth, 104 (1999), 28983-29006. https://doi.org/10.1029/1999JB900179 doi: 10.1029/1999JB900179
    [10] T. Jupp, A. Schultz, A thermodynamic explanation for black smoker temperatures, Nature, 403 (2000), 880-883. https://doi.org/10.1038/35002552 doi: 10.1038/35002552
    [11] E. E. Davis, K. Becker, J. He, Costa Rica Rift revisited: Constraints on shallow and deep hydrothermal circulation in young oceanic crust, Earth Planet. Sci. Lett., 222 (2004), 863-879. https://doi.org/10.1016/j.epsl.2004.03.032 doi: 10.1016/j.epsl.2004.03.032
    [12] F. J. Fontaine, M. Rabinowicz, J. Boulègue, Permeability changes due to mineral diagenesis in fractured crust: implications for hydrothermal circulation at mid-ocean ridges, Earth Planet. Sci. Lett., 184 (2001), 407-425. https://doi.org/10.1016/S0012-821X(00)00332-0 doi: 10.1016/S0012-821X(00)00332-0
    [13] T. J. Crone, W. S. D. Wilcock, Modeling the effects of tidal loading on mid-ocean ridge hydrothermal systems, Geochem., Geophys., Geosyst., 6 (2005), 3021-3045. https://doi.org/10.1029/2004GC000905 doi: 10.1029/2004GC000905
    [14] T. E. Jupp, A. Schultz, A poroelastic model for the tidal modulation of seafloor hydrothermal systems, J. Geophys. Res.: Solid Earth, 109 (2004), 1-14. https://doi.org/10.1029/2003JB002583 doi: 10.1029/2003JB002583
    [15] W. S. D. Wilcock, Cellular convection models of mid-ocean ridge hydrothermal circulation and the temperatures of black smoker fluids, J. Geophys. Res.: Solid Earth, 103 (1998), 2585-2596. https://doi.org/10.1029/97JB03252 doi: 10.1029/97JB03252
    [16] Y. Jiang, B. Li, G. Wang, S. Li, New advances in experimental study on seepage characteristics of rock fractures, Chin. J. Rock Mech. Eng., 27 (2008), 2377-2386. https://doi.org/10.3321/j.issn:1000-6915.2008.12.001 doi: 10.3321/j.issn:1000-6915.2008.12.001
    [17] X. Y. Ma, H. X. Rui, Q. Wang, Experimental study of permeability characteristics of multiscale rock, Rock Soil Mech., 35 (2014), 2191-2196+2204. https://doi.org/10.16285/j.rsm.2014.08.008 doi: 10.16285/j.rsm.2014.08.008
    [18] L. Zhang, H. B. Wang, J. Niu, Y. J. He, Research progrogress of convection heat transfer of supercritical pressure fluid in porous media, Sci. Technol. Eng., 20 (2020), 3808-3816. Available from: https://d.wanfangdata.com.cn/periodical/kxjsygc202010002.
    [19] P. Alt-Epping, L. W. Diamond, Reactive transport and numerical modeling of seafloor hydrothermal systems: a review, Magma Microbe: Model. Hydrotherm. Processes Ocean Spreading Cent., 178 (2008), 167-192. https://doi.org/10.1029/178GM09 doi: 10.1029/178GM09
    [20] S. Wang, S. Zhai, Z. H. Yu, K. Guo, X. Zhang, Reflections on model of modern seafloor hydrothermal system, Earth Sci., 43 (2018), 835-850. https://doi.org/10.3799/dqkx.2018.907 doi: 10.3799/dqkx.2018.907
    [21] E. S. Maayah, H. M. Duwairi, B. Maayah, Analytical model of solar energy storage using non—Newtonian Fluid in a saturated porous media in fully developed region: carboxymethyl cellulose (CMC) and graphite model, AIMS Energy, 9 (2021), 213-237. https://doi.org/10.3934/energy.2021012 doi: 10.3934/energy.2021012
    [22] S. C. Zhang, A research on permeability calculation method based on reservoir classification in X area, China Manganese Ind., 37 (2019), 52-56. https://doi.org/10.14101/j.cnki.issn.1002-4336.2019.02.013 doi: 10.14101/j.cnki.issn.1002-4336.2019.02.013
    [23] Y. C. Niu, The Relationship Between Compression and Resilience Characteristics of Sedimentary Rock and Lithology and Pore Structure, MA thesis, Northwest University in Xi'an, 2017. Available from: https://kns.cnki.net/kcms/detail/detail.aspx?dbcode=CMFD&dbname=CMFD201801&filename=1017271258.nh&uniplatform=NZKPT&v=ziLL9axxqsZhY_0gSnj1nLmFBITsne5dw5VI2kWI8O6t7I6J6qPP9gmM_3iUvtp2.
    [24] O. C. Alejandro, A. Perez-Soria, I. Cruz-Maya, V. Guarino, M. A. Alvarez-Perez, Macro-, micro-and mesoporous materials for tissue engineering applications, AIMS Mater. Sci., 5 (2018), 1124-1140. https://doi.org/10.3934/matersci.2018.6.1124 doi: 10.3934/matersci.2018.6.1124
    [25] P. J. Saccocia, K. M. Gillis, Hydrothermal upflow zones in the oceanic crust, Earth Planet. Sci. Lett., 136 (1995), 1-16. https://doi.org/10.1016/0012-821X(95)00155-5 doi: 10.1016/0012-821X(95)00155-5
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1454) PDF downloads(69) Cited by(0)

Article outline

Figures and Tables

Figures(13)  /  Tables(2)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog